Publicación: Existence and uniqueness of ∞-harmonic functions under assumption of ∞-Poincaré inequality
dc.contributor.author | Durand Cartagena, Estibalitz | |
dc.contributor.author | Jaramillo, Jesús A. | |
dc.contributor.orcid | https://orcid.org/0000-0002-0197-6449 | |
dc.contributor.orcid | https://orcid.org/0000-0002-2891-5064 | |
dc.date.accessioned | 2024-12-03T12:48:40Z | |
dc.date.available | 2024-12-03T12:48:40Z | |
dc.date.issued | 2018-08-22 | |
dc.description | The registered version of this article, first published in Mathematische Annalen, is available online at the publisher's website: Springer Nature, https://doi.org/10.1007/s00208-018-1747-z | |
dc.description | La versión registrada de este artículo, publicado por primera vez en Mathematische Annalen, está disponible en línea en el sitio web del editor: Springer Nature, https://doi.org/10.1007/s00208-018-1747-z | |
dc.description.abstract | Given a complete metric measure space whose measure is doubling and supports an ∞- Poincar´e inequality, and a bounded domain Ω in such a space together with a Lipschitz function f : ∂Ω → R, we show the existence and uniqueness of an ∞-harmonic extension of f to Ω. To do so, we show that there is a metric that is bi-Lipschitz equivalent to the original metric, such that with respect to this new metric the metric space satisfies an ∞- weak Fubini property and that a function which is ∞-harmonic in the original metric must also be ∞-harmonic with respect to the new metric. We also show that if the metric on the metric space satisfies an ∞-weak Fubini property, then the notion of ∞-harmonic functions coincide with the notion of AMLEs proposed by Aronsson. The notion of ∞-harmonicity is in general distinct from the notion of strongly absolutely minimizing Lipschitz extensions found in [13, 25, 26], but coincides when the metric space supports a p-Poincar´e inequality for some finite p ≥ 1. | en |
dc.description.version | versión final | |
dc.identifier.citation | Durand-Cartagena, E., Jaramillo, J.A. & Shanmugalingam, N. Existence and uniqueness of ∞-harmonic functions under assumption of ∞-Poincaré inequality. Math. Ann. 374, 881–906 (2019). https://doi.org/10.1007/s00208-018-1747-z | |
dc.identifier.doi | https://doi.org/10.1007/s00208-018-1747-z | |
dc.identifier.issn | 1432-1807 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/24672 | |
dc.journal.issue | 374 | |
dc.journal.title | Mathematische Annalen | |
dc.language.iso | en | |
dc.page.final | 906 | |
dc.page.initial | 881 | |
dc.publisher | Springer Nature | |
dc.relation.center | Facultades y escuelas::E.T.S. de Ingenieros Industriales | |
dc.relation.department | Matemática Aplicada I | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 12 Matemáticas | |
dc.subject.keywords | ∞-Poincar´e inequality | en |
dc.subject.keywords | ∞-harmonic | en |
dc.subject.keywords | AMLE | en |
dc.subject.keywords | metric measure spaces | en |
dc.title | Existence and uniqueness of ∞-harmonic functions under assumption of ∞-Poincaré inequality | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
person.familyName | Durand Cartagena | |
person.givenName | Estibalitz | |
person.identifier.orcid | 0000-0001-6469-3633 | |
relation.isAuthorOfPublication | d59ccac2-efd7-4059-9e2b-d7fc36689f85 | |
relation.isAuthorOfPublication.latestForDiscovery | d59ccac2-efd7-4059-9e2b-d7fc36689f85 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Existence and uniqueness of ∞-harmonic.pdf
- Tamaño:
- 382.54 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: