Cargando...
Fecha
2018-08-22
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editor
Springer Nature
Resumen
Given a complete metric measure space whose measure is doubling and supports an ∞- Poincar´e inequality, and a bounded domain Ω in such a space together with a Lipschitz function f : ∂Ω → R, we show the existence and uniqueness of an ∞-harmonic extension of f to Ω. To do so, we show that there is a metric that is bi-Lipschitz equivalent to the original metric, such that with respect to this new metric the metric space satisfies an ∞- weak Fubini property and that a function which is ∞-harmonic in the original metric must also be ∞-harmonic with respect to the new metric. We also show that if the metric on the metric space satisfies an ∞-weak Fubini property, then the notion of ∞-harmonic functions coincide with the notion of AMLEs proposed by Aronsson. The notion of ∞-harmonicity is in general distinct from the notion of strongly absolutely minimizing Lipschitz extensions found in [13, 25, 26], but coincides when the metric space supports a p-Poincar´e inequality for some finite p ≥ 1.
Descripción
The registered version of this article, first published in Mathematische Annalen, is available online at the publisher's website: Springer Nature, https://doi.org/10.1007/s00208-018-1747-z
La versión registrada de este artículo, publicado por primera vez en Mathematische Annalen, está disponible en línea en el sitio web del editor: Springer Nature, https://doi.org/10.1007/s00208-018-1747-z
La versión registrada de este artículo, publicado por primera vez en Mathematische Annalen, está disponible en línea en el sitio web del editor: Springer Nature, https://doi.org/10.1007/s00208-018-1747-z
Categorías UNESCO
Palabras clave
∞-Poincar´e inequality, ∞-harmonic, AMLE, metric measure spaces
Citación
Durand-Cartagena, E., Jaramillo, J.A. & Shanmugalingam, N. Existence and uniqueness of ∞-harmonic functions under assumption of ∞-Poincaré inequality. Math. Ann. 374, 881–906 (2019). https://doi.org/10.1007/s00208-018-1747-z
Centro
Facultades y escuelas::E.T.S. de Ingenieros Industriales
Departamento
Matemática Aplicada I