Publicación: Kalkayotl: A cluster distance inference code
dc.contributor.author | Olivares Romero, Javier | |
dc.contributor.author | Sarro Baro, Luis Manuel | |
dc.contributor.author | Bouy, Hervé | |
dc.contributor.author | Miret Roig, Nuria | |
dc.contributor.author | Casamiquela, Laia | |
dc.contributor.author | Galli, P. A. B. | |
dc.contributor.author | Berihuete, Ángel | |
dc.contributor.author | Tarricq, Y. | |
dc.contributor.orcid | https://orcid.org/0000-0002-7084-487X | |
dc.contributor.orcid | https://orcid.org/0000-0001-5292-0421 | |
dc.contributor.orcid | https://orcid.org/0000-0001-5238-8674 | |
dc.contributor.orcid | https://orcid.org/0000-0002-8589-4423 | |
dc.date.accessioned | 2024-06-03T13:09:45Z | |
dc.date.available | 2024-06-03T13:09:45Z | |
dc.date.issued | 2020-11-24 | |
dc.description | The registered version of this article, first published in Astronomy & Astrophysics (A&A), is available online at the publisher's website: EDP Sciences, https://doi.org/10.1051/0004-6361/202037846 | |
dc.description | La versión registrada de este artículo, publicado por primera vez en Astronomy & Astrophysics (A&A), está disponible en línea en el sitio web del editor: EDP Sciences, https://doi.org/10.1051/0004-6361/202037846 | |
dc.description.abstract | Context. The high-precision parallax data of the Gaia mission allows for significant improvements in the distance determination to stellar clusters and their stars. In order to obtain accurate and precise distance determinations, systematics such as parallax spatial correlations need to be accounted for, especially with regard to stars in small sky regions. Aims. Our aim is to provide the astrophysical community with a free and open code designed to simultaneously infer cluster parameters (i.e., distance and size) and distances to the cluster stars using Gaia parallax measurements. The code includes cluster-oriented prior families and it is specifically designed to deal with the Gaia parallax spatial correlations. Methods. A Bayesian hierarchical model is created to allow for the inference of both the cluster parameters and distances to its stars. Results. Using synthetic data that mimics Gaia parallax uncertainties and spatial correlations, we observe that our cluster-oriented prior families result in distance estimates with smaller errors than those obtained with an exponentially decreasing space density prior. In addition, the treatment of the parallax spatial correlations minimizes errors in the estimated cluster size and stellar distances, and avoids the underestimation of uncertainties. Although neglecting the parallax spatial correlations has no impact on the accuracy of cluster distance determinations, it underestimates the uncertainties and may result in measurements that are incompatible with the true value (i.e., falling beyond the 2σ uncertainties). Conclusions. The combination of prior knowledge with the treatment of Gaia parallax spatial correlations produces accurate (error < 10%) and trustworthy estimates (i.e., true values contained within the 2σ uncertainties) of cluster distances for clusters up to ∼5 kpc, along with cluster sizes for clusters up to ∼1 kpc. | en |
dc.description.version | versión publicada | |
dc.identifier.citation | Kalkayotl: A cluster distance inference code J. Olivares, L. M. Sarro, H. Bouy, N. Miret-Roig, L. Casamiquela, P. A. B. Galli, A. Berihuete and Y. Tarricq A&A, 644 (2020) A7 DOI: https://doi.org/10.1051/0004-6361/202037846 | |
dc.identifier.doi | https://doi.org/10.1051/0004-6361/202037846 | |
dc.identifier.issn | 0004-6361 - eISSN 1432-0746 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14468/22256 | |
dc.journal.title | Astronomy & Astrophysics (A&A) | |
dc.journal.volume | 644 | |
dc.language.iso | en | |
dc.publisher | EDP Sciences | |
dc.relation.center | Facultades y escuelas::E.T.S. de Ingeniería Informática | |
dc.relation.department | Inteligencia Artificial | |
dc.rights | Atribución 4.0 Internacional | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/deed.es | |
dc.subject | 33 Ciencias Tecnológicas | |
dc.subject.keywords | methods: statistical | en |
dc.subject.keywords | parallaxes | en |
dc.subject.keywords | open clusters and associations: general | en |
dc.subject.keywords | stars: distances | en |
dc.subject.keywords | virtual observatory tools | en |
dc.title | Kalkayotl: A cluster distance inference code | en |
dc.type | artículo | es |
dc.type | journal article | en |
dspace.entity.type | Publication | |
person.familyName | Olivares Romero | |
person.familyName | Sarro Baro | |
person.givenName | Javier | |
person.givenName | Luis Manuel | |
person.identifier.orcid | 0000-0002-5622-5191 | |
relation.isAuthorOfPublication | e55cff36-187f-49e9-81cb-cbaf28716c53 | |
relation.isAuthorOfPublication | 9f881bbd-b55d-43bd-87b0-41f8f72cff48 | |
relation.isAuthorOfPublication.latestForDiscovery | e55cff36-187f-49e9-81cb-cbaf28716c53 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- sarrobaro_luismanuel_Kalkayotl.pdf
- Tamaño:
- 662.22 KB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 3.62 KB
- Formato:
- Item-specific license agreed to upon submission
- Descripción: