Publicación:
On the connectedness of the branch locus of moduli space of hyperelliptic Klein surfaces with one boundary

dc.contributor.authorIzquierdo, Milagros
dc.contributor.authorCosta González, Antonio Félix
dc.contributor.authorPorto Ferreira da Silva, Ana María
dc.date.accessioned2024-05-20T11:47:16Z
dc.date.available2024-05-20T11:47:16Z
dc.date.issued2015-01-01
dc.description.abstractAbstract. In this work we prove that the hyperelliptic branch locus of ori- entable Klein surfaces of genus g with one boundary component is connected and in the case of non-orientable Klein surfaces it has g+1 2 components, if g is odd, and g+2 2 components for even g. We notice that, for non-orientable Klein surfaces with two boundary components, the hyperelliptic branch loci are connected for all genera.en
dc.description.versionversión publicada
dc.identifier.issn0046-5755, EISSN: 1572-9168
dc.identifier.urihttps://hdl.handle.net/20.500.14468/12553
dc.journal.titleGeometriae Dedicata
dc.journal.volume177
dc.language.isoen
dc.relation.centerFacultad de Ciencias
dc.relation.departmentMatemáticas Fundamentales
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0
dc.subject.keywordsgeometría
dc.titleOn the connectedness of the branch locus of moduli space of hyperelliptic Klein surfaces with one boundaryes
dc.typejournal articleen
dc.typeartículoes
dspace.entity.typePublication
person.familyNameCosta González
person.familyNamePorto Ferreira da Silva
person.givenNameAntonio Félix
person.givenNameAna María
person.identifier.orcid0000-0002-9905-0264
person.identifier.orcid0000-0001-7005-7908
relation.isAuthorOfPublication8dbf4941-94eb-4e49-a01e-8b9c32463231
relation.isAuthorOfPublication9d2429ee-9b97-4b4d-8e2a-4b7fc7f1798e
relation.isAuthorOfPublication.latestForDiscovery8dbf4941-94eb-4e49-a01e-8b9c32463231
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Costa_Antonio_ConnectednessHyperLocus.pdf
Tamaño:
298.08 KB
Formato:
Adobe Portable Document Format