Cargando...
Miniatura
Fecha
2025-10-01
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editorial
Springer

Citas

0 citas en WOS
0 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
We present a hybrid neural network model for inferring the position of mobile robots using Channel State Information (CSI) data from a Massive MIMO system. By leveraging an existing CSI dataset, our approach integrates a Convolutional Neural Network (CNN) with a Multilayer Perceptron (MLP) to form a Hybrid Neural Network (HyNN) that estimates 2D robot positions. CSI readings are converted into synthetic images using the TINTO tool. The localisation solution is integrated with a robotics simulator, and the Robot Operating System (ROS), which facilitates its evaluation through heterogeneous test cases, and the adoption of state estimators like Kalman filters. Our contributions illustrate the potential of our HyNN model in achieving precise indoor localisation and navigation for mobile robots in complex environments. The study follows, and proposes, a generalisable procedure applicable beyond the specific use case studied, making it adaptable to different scenarios and datasets.
Descripción
The registered version of this conference paper, first published in "Robotics, Computer Vision and Intelligent Systems - 5th International Conference, ROBOVIS 2025, Proceedings", is available online at the publisher's website: https://doi.org/10.1007/978-3-032-00986-9_11
La versión registrada de esta comunicación, publicada por primera vez en "Robotics, Computer Vision and Intelligent Systems - 5th International Conference, ROBOVIS 2025, Proceedings", está disponible en línea en el sitio web del editor: https://doi.org/10.1007/978-3-032-00986-9_11
Categorías UNESCO
Palabras clave
Indoor localisation, Positioning, Deep Learning, Hybrid Neural Network, Robotics Simulation
Citación
Ballesteros-Jerez, J., Martínez-Gómez, J., García-Varea, I., Orozco-Barbosa, L., & Castillo-Cara, M. (2025, February). Hybrid Neural Network-Based Indoor Localisation System for Mobile Robots Using CSI Data in a Robotics Simulator. In International Conference on Robotics, Computer Vision and Intelligent Systems (pp. 148-163). Cham: Springer Nature Switzerland
Centro
E.T.S. de Ingeniería Informática
Departamento
Inteligencia Artificial
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
Datos de investigación relacionados