Cargando...
Miniatura
Fecha
2020-07-01
Editor/a
Director/a
Tutor/a
Coordinador/a
Prologuista
Revisor/a
Ilustrador/a
Derechos de acceso
info:eu-repo/semantics/openAccess
Título de la revista
ISSN de la revista
Título del volumen
Editorial
Association for Computational Linguistics Note:

Citas

0 citas en WOS
23 citas en
Proyectos de investigación
Unidades organizativas
Número de la revista
Resumen
In Ordinal Classification tasks, items have to be assigned to classes that have a relative ordering, such as positive, neutral, negative in sentiment analysis. Remarkably, the most popular evaluation metrics for ordinal classification tasks either ignore relevant information (for instance, precision/recall on each of the classes ignores their relative ordering) or assume additional information (for instance, Mean Average Error assumes absolute distances between classes). In this paper we propose a new metric for Ordinal Classification, Closeness Evaluation Measure, that is rooted on Measurement Theory and Information Theory. Our theoretical analysis and experimental results over both synthetic data and data from NLP shared tasks indicate that the proposed metric captures quality aspects from different traditional tasks simultaneously. In addition, it generalizes some popular classification (nominal scale) and error minimization (interval scale) metrics, depending on the measurement scale in which it is instantiated.
Descripción
Categorías UNESCO
Palabras clave
Citación
Amigó, E., Gonzalo, J., & Mizzaro, S. (2020). An Effectiveness Metric for Ordinal Classification: Formal Properties and Experimental Results. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, ACL 2020, July 5-10, 2020. pp 3938--3949. Association for Computational Linguistics. https://doi.org/10.18653/v1/2020.acl-main.363
Centro
E.T.S. de Ingeniería Informática
Departamento
Lenguajes y Sistemas Informáticos
Grupo de investigación
Grupo de innovación
Programa de doctorado
Cátedra
Datos de investigación relacionados