Publicación:
Cerebral ischemia detection using Deep Learning techniques

dc.contributor.authorPastor Vargas, Rafael
dc.contributor.authorAntón‑Munárriz, Cristina
dc.contributor.authorHaut, Juan M.
dc.contributor.authorRobles Gómez, Antonio
dc.contributor.authorPaoletti, Mercedes E.
dc.contributor.authorBenítez Andrades, José Alberto
dc.contributor.orcidhttps://orcid.org/0000-0002-4089-9538
dc.date.accessioned2025-05-26T06:24:39Z
dc.date.available2025-05-26T06:24:39Z
dc.date.issued2025-05-20
dc.descriptionLa versión registrada de este artículo, publicado por primera vez en Health Information Science and Systems, vol. 13, nº 36, está disponible en línea en el sitio web del editor: Springer International Publishing, https://doi.org/10.1007/s13755-025-00352-8. The registered version of this article, first published in Health Information Science and Systems, Vol. 13, No. 36, is available online from the publisher's website: Springer International Publishing, https://doi.org/10.1007/s13755-025-00352-8.
dc.description.abstractCerebrovascular accident (CVA), commonly known as stroke, stands as a significant contributor to contemporary mortality and morbidity rates, often leading to lasting disabilities. Early identification is crucial in mitigating its impact and reducing mortality. Non-contrast computed tomography (NCCT) remains the primary diagnostic tool in stroke emergencies due to its speed, accessibility, and cost-effectiveness. NCCT enables the exclusion of hemorrhage and directs attention to ischemic causes resulting from arterial flow obstruction. Quantification of NCCT findings employs the Alberta Stroke Program Early Computed Tomography Score (ASPECTS), which evaluates affected brain structures. This study seeks to identify early alterations in NCCT density in patients with stroke symptoms using a binary classifier distinguishing NCCT scans with and without stroke. To achieve this, various well-known deep learning architectures, namely VGG3D, ResNet3D, and DenseNet3D, validated in the ImageNet challenges, are implemented with 3D images covering the entire brain volume. The training results of these networks are presented, wherein diverse parameters are examined for optimal performance. The DenseNet3D network emerges as the most effective model, attaining a training set accuracy of 98% and a test set accuracy of 95%. The aim is to alert medical professionals to potential stroke cases in their early stages based on NCCT findings displaying altered density patterns.en
dc.description.versionversión publicada
dc.identifier.citationPastor-Vargas, R., Antón-Munárriz, C., Haut, J.M., Robles- Gómez, A., Paoletti, M.E., Benítez-Andrades, J.A. (2025); Cerebral ischemia detection using deep learning techniques; Health Information Science and Systems, vol. 13, nº 36, Springer International Publishing ; Páginas 1-19; (https://doi.org/10.1007/s13755-025-00352-8).
dc.identifier.doihttps://doi.org/10.1007/s13755-025-00352-8
dc.identifier.issn2047-2501
dc.identifier.urihttps://hdl.handle.net/20.500.14468/26841
dc.journal.issue36
dc.journal.titleHealth Information Science and Systems
dc.journal.volume13
dc.language.isoen
dc.publisherSpringer
dc.relation.centerE.T.S. de Ingeniería Informática
dc.relation.departmentSistemas de Comunicación y Control
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.es
dc.subject1203.17 Informática
dc.subject.keywordsCerebral ischemiaen
dc.subject.keywordsComputed tomographyen
dc.subject.keywordsDeep learningen
dc.subject.keywordsTransfer learningen
dc.subject.keywordsIctus dataseten
dc.titleCerebral ischemia detection using Deep Learning techniquesen
dc.typeartículoes
dc.typejournal articleen
dspace.entity.typePublication
person.familyNamePastor Vargas
person.familyNameRobles Gómez
person.givenNameRafael
person.givenNameAntonio
person.identifier.orcid0000-0002-4089-9538
person.identifier.orcid0000-0002-5181-0199
relation.isAuthorOfPublicationf93103de-336d-47ac-886b-e2cbd425ed87
relation.isAuthorOfPublication17556659-f434-4220-841d-aac35f492e62
relation.isAuthorOfPublication.latestForDiscoveryf93103de-336d-47ac-886b-e2cbd425ed87
Archivos
Bloque original
Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Cerebral ischemia_Robles-Gomez-A.pdf
Tamaño:
3.26 MB
Formato:
Adobe Portable Document Format
Bloque de licencias
Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.62 KB
Formato:
Item-specific license agreed to upon submission
Descripción: