Persona:
Colmenar Santos, Antonio

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0001-8543-4550
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Colmenar Santos
Nombre de pila
Antonio
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 17
  • Publicación
    Technical approach for the inclusion of superconducting magnetic energy storage in a smart city
    (Elsevier, 2018-09-01) Molina Ibáñez, Enrique Luis; Rosales Asensio, Enrique; Colmenar Santos, Antonio; López-Rey García-Rojas, África
    Smart grids are a concept which is evolving quickly with the implementation of renewable energies and concepts such as Distributed Generation (DG) and micro-grids. Energy storage systems play a very important role in smart grids. The characteristics of smart cities enhance the use of high power density storage systems, such as SMES systems. Because of this, we studied the possibility of adapting these systems in this kind of electrical topology by simulating the effects of an energy storage system with high power density (as SMES). An electrical and control adaptation circuit for storing energy was designed. The circuit consisted of three blocks. The first one was a passive filter LCL. The second was a converter system that allows rectifying of the signal when the system runs in charge mode but acts as an inverter when it changes to discharge mode. Finally, there is a chopper that allows the current levels to be modified. Throughout simulations, we have seen the possibility of controlling the energy supply so as the storage. This permits to adapt to different contingencies which may induce the wiring of the charge in the net, as well as different types of charges. Despite the technical contribution of this kind of systems in the Spanish electrical network, there are big obstacles that would prevent its inclusion in the network, such as the high cost of manufacturing and maintenance compared with other cheaper systems such as superconductors or the low energy density, which limits their use.
  • Publicación
    Legislative and economic aspects for the inclusion of energy reserve by a superconducting magnetic energy storage: Application to the case of the Spanish electrical system
    (Elsevier, 2018-02) Molina Ibáñez, Enrique Luis; Rosales Asensio, Enrique; Blanes Peiró, Jorge Juan; Colmenar Santos, Antonio
    With the encouragement from renewable energies, elements of the electrical system are magnified which make possible a suitable connection to the electrical network. Among others, energy storage systems (ESSs) are emphasized because of their impact. This article discusses two essential aspects to take into account for an ESS, that is the regulatory framework and the economic aspect. In particular, it focuses on superconducting magnetic energy storage (SMES) in the Spanish electrical system. An analysis is performed on the legislation and regulations that apply to energy storage systems, which may affect in a direct or indirect manner its inclusion. This is accompanied by an analysis of the legislation in different countries to assess the situation in Spain in this regard, by comparison. Another point to take into consideration, which is crucial for the correct development and inclusion of this type of elements, is the economic viability- showing the costs of manufacturing and maintenance of these systems. Although it is necessary to keep investigating to lower the costs, economic benefits are appreciated, among other things, owing to the increase of the reliability of the electrical network. This increase of the reliability is resultant from a decrease of the cuts of service and the improvement of the quality of the energy.
  • Publicación
    Analysis on the electric vehicle with a hybrid storage system and the use of Superconducting magnetic energy storage (SMES)
    (Elsevier, 2021-11) Molina Ibáñeza, Enrique Luis; Rosales Asensio, Enrique; Pérez Molina, Clara María; Colmenar Santos, Antonio; Mur Pérez, Francisco
    Given the current load and power density limitations in electric vehicle (EV) storage systems, it is necessary to study hybrid and control systems in order to optimize their performance and present themselves as a real alternative to internal combustion engine (ICE) vehicles. This implies the development of legislation and specific regulations that enable the research and development of these storage and management systems for hybrid systems. The research presented here aims to analyze the implementation of the SMES (Superconducting Magnetic Energy Storage) energy storage system for the future of electric vehicles. To do this, the need for a hybrid storage system has been taken into account, with several regulatory options, such as the reduction of rates or the promotion of private investments, which allow the technological development of EVs. What is sought is to achieve the market share proposed by the different countries to reduce Greenhouse Gases (GHG), according to their objectives. This approach must be taken from the legislative and regulatory perspective, specific to EVs and charging points, of several countries or regions with different cultures, management models and implementation potential, such as the United States of America (USA), Europe and China. This analysis is associated with the economic study of costs that this storage system may involve in the implementation of EVs to replace ICE vehicles, resulting in possible economic benefits as well as the environmental benefits of the use of EVs. In this analysis, the current high cost of using a hybrid system of these characteristics can be observed with the comparison of three EVs, as well as current data on GHG emissions produced by transport. All this leads to a series of advantages and disadvantages that must be taken into account in order to achieve the objectives that countries have in the coming decades of EV diffusion.
  • Publicación
    Techno-economic analysis of a heat and power combination system based on hybrid photovoltaic-fuel cell systems using hydrogen as an energy vector
    (Elsevier, 2021-06-01) Peláez Peláez, Sofía; Colmenar Santos, Antonio; Pérez Molina, Clara María; Ana-Esther Rosales
    A techno-economic assessment is conducted for a hybrid combined generation system based on renewable storage technologies such as those offered by fuel cells and using hydrogen as a fuel, which is considered to be a sustainable energy vector. The proposed system consists of three subsystems: a photovoltaic system, which generates electrical energy through solar energy; the system for the generation, consumption and storage of hydrogen, where an electrolyzer is available to obtain hydrogen from water; the fuel cell, which will generate electrical and heat energy and a hydrogen tank to store the hydrogen; and a thermal system, consisting of a Heat Recovery Steam System and an absorption chiller where the thermal energy from the heat cell will be used for the thermal load. The electrical energy generated by the fuel cell serves as a support for the solar energy when, for whatever reason, it cannot meet the demand. The economic assessment, performed using the Hybrid Optimization of Multiple Energy Resources (HOMER) software, shows that the net present cost of the optimized system is $1,006,293 and the cost of energy $0.8399/kWh. The research here presented proved that, although this system is not economically viable at present, it is technically possible.
  • Publicación
    Líneas de investigación del DIEEC de la UNED en Enseñanza a Distancia
    (2001-06-01) Peire Arroba, Juan; Rivilla, I.; Castro Gil, Manuel Alonso; Colmenar Santos, Antonio; Carpio Ibáñez, José
  • Publicación
    Technological improvements in energetic efficiency and sustainability in existing combined-cycle gas turbine (CCGT) power plants
    (Elsevier, 2018-08-01) Gómez Camazón, David; Rosales Asensio, Enrique; Blanes Peiró, Jorge Juan; Colmenar Santos, Antonio
    Data from an existing combined-cycle gas turbine (CCGT) power plant are used to create a computer simulation to allow efficiency and emission calculations, simulation and assessing improvements that apply partial regeneration with solar hybridization. The proposed amendments to this triple-pressure steam-reheat combined cycle (CCC3PR) with 400 MW of net power incorporates a regenerator and thermal energy, from a source of renewable solar energy up to 50 MW, in order to reduce the energy loss in the gas turbine. The calculation and simulation models were created using Visual Basic code. Regeneration and solar hybridization were found to contribute to increasing efficiencies of around 2.25% to 3.29% depending on the loading point. The reduction of gas consumption was between 6.25% and 9.45% and the overall cycle efficiency loss is minimal due to hybridization. There was a loss of the net power of the new cycle but it is considerably lower if than heat from a renewable source is supplied to the cycle. This net power loss has an average value of 7.5% with regeneration only and of 1% with regeneration and hybridization. The reduction of fuel consumption is significant which could result in saving approximately 4 million €/year. Partial regeneration in the gas turbine and solar thermal power in the existing CCGTs provide an interesting possibility for reducing emissions (by 26,167 t/year). In conclusion, partial regeneration with solar hybridization provides an interesting and proven possibility to increase performance and efficiency whilst reducing emissions from the existing CCC3PR.
  • Publicación
    Technical challenges for the optimum penetration of grid-connected photovoltaic systems: Spain as a case study
    (Elsevier, 2020-01) Linares Mena, Ana Rosa; Molina Ibáñez, Enrique Luis; Rosales Asensio, Enrique; Borge-Diez, David; Colmenar Santos, Antonio
    This research reviews the technical requirements of grid-connected photovoltaic power plants to increase their competitiveness and efficiently integrate into the grid to satisfy future demand requirements and grid management challenges, focusing on Spain as a case study. The integration of distributed resources into the electric network, in particular photovoltaic energy, requires an accurate control of the system. The integration of photovoltaic energy has resulted in significant changes to the regulatory framework to ensure proper integration of distributed generation units in the grid. In this study, the requirements of the system operator for the management and smart control are first analysed and then the technical specifications established by the network operator in reference to the components of the facility are evaluated. This analysis identifies the shortcomings of the current legislation and concludes with a summary of the main technical recommendations and future regulatory challenges that need to be undertaken in the future. It is presented as a reference case that can be adapted worldwide.
  • Publicación
    Simulation of modeling of multi-megawatt photovoltaic plants with high voltage direct current grid integration
    (Elsevier, 2018-05-15) Guinduláin Argandoña, Tomás; Rosales Asensio, Enrique; Molina Ibáñez, Enrique Luis; Blanes Peiró, Jorge Juan; Colmenar Santos, Antonio
    This paper develops an integrated model of multi megawatt PV plant with HVDC (High Voltage Direct Current) or HVAC (High Voltage Alternating Current) network, using the specific software of power electronics PSIM. This model has been developed by functional blocks, including the photovoltaic field itself, the pertinent conversion units for the integration of each network as well as the network type for production. The models allow to obtain transmissions loss for any combination of the three variables on which they depend; network length (km), temperature (°C) and irradiance (W/m2). To verify the validity of the model and demonstrate the distribution advantages of HVDC -even for relatively low-photovoltaic power plants in comparison to the common applications currently used in HVDC networks-, a case study has been used which has led to the conclusion that the use of HVDC networks may be convenient for this type of power generation plants.
  • Publicación
    Pico turbines, the solution to self-supply energy to the water supply network. A case study in Las Palmas de Gran Canaria
    (Elsevier, 2021-08-15) Borge-Diez, David; Godoy Deniz, Juan Manuel; López-Rey García-Rojas, África; Colmenar Santos, Antonio
    This paper describes the integration of the pico turbines in the drinking water network of the city of Las Palmas de Gran Canaria (Spain). World's drinking water supply companies need updates his infrastructure and technology to turn existing networks into smart water networks, to preserve people's health by ensuring the potability of water for human consumption. The essential parameters for water quality (such as chlorine level, pH, turbidity and others) can be easily measured using sensors inserted in the pipes and in the storage and distribution tanks. Access to this information in real time and immediate action is essential to ensure the health of the people who access this vital element. It is therefore essential to increase the number of sensors and the analysis of the data they provide in order to detect anomalies, correct them and anticipate their consequences. Some of the objectives are the correct measurement of meters to detect leaks and anomalous consumption, saving water and energy, avoiding water and air pollution, achieving efficient supply to the consumer and achieving profitable, efficient and environmentally sustainable urban hydraulic systems. All systems require power, the pico turbines inserted in the network can supply power without affecting the normal operation of the network. Pico turbines are highly efficient, low cost and easy to install systems, but they are not widely used. The case exposed in this city could be replicated in many urban systems, it is novel that there is no literature of massive applications, existing a wide capacity of implantation and development of this technology. When it seems that the locations for the installation of hydroelectric plants have been exhausted, it is time to commit to the development of this mature technology on the micro-scale of the infrastructures already created, the novelty is to continue discovering those places where there is untapped energy potential. There is capacity to grow in very small hydroelectric systems with immediate profitability. The researchers in this article describe the first phase of an investigation that has gone hand in hand with its validation and actual exploitation. The aim is for managers not to forget this technology, which has a very wide growth field to satisfy the small demand for distributed energy in water networks of all types. The authors hope that the results of the research carried out will motivate other technicians to apply the energy potential of their water networks for the self-sufficiency of their control, remote control, chemical dosage and water analysis systems. The applications they carry out will be immediately profitable.
  • Publicación
    Novel design and development of advanced remote electronics experiments
    (Wiley, 2014-05-14) Tawfik, Mohamed; Monteso Fernández, Santiago; García Loro, Félix; Ruiz Larrocha, Elena; Díaz Orueta, Gabriel; Colmenar Santos, Antonio; Peire, Juan; Castro Gil, Manuel Alonso; Sancristóbal Ruiz, Elio
    This article reports on the design and development of a new set of remotely controlled electronics experiments oriented to postgraduates and apprentices. Industrial-related issues are emphasized to allow understanding of the behavior of electronics components. The experiments are fully delivered online with a high level of flexibility. Remote retrieved results are provided.