Persona: Robles Gómez, Antonio
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-5181-0199
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Robles Gómez
Nombre de pila
Antonio
Nombre
18 resultados
Resultados de la búsqueda
Mostrando 1 - 10 de 18
Publicación Forensic Analysis Laboratory for Sport Devices: A Practical Case of Use(MDPI, 2023) Donaire Calleja, Pablo; Robles Gómez, Antonio; Tobarra Abad, María de los Llanos; Pastor Vargas, RafaelAt present, the mobile device sector is experiencing significant growth. In particular, wear- 1 able devices have become a common element in society. This fact implies that users unconsciously 2 accept the constant dynamic collection of private data about their habits and behaviours. Therefore, 3 this work focuses on highlighting and analyzing some of the main issues that forensic analysts face 4 in this sector, such as the lack of standard procedures for analysis and the common use of private 5 protocols for data communication. Thus, it is almost impossible for a digital forensic specialist to 6 fully specialize in the context of wearables, such as smartwatches for sports activities. With the aim 7 of highlighting these problems, a complete forensic analysis laboratory for such sports devices is 8 described in this paper. We selected a smartwatch belonging to the Garmin Forerunner Series, due to 9 its great popularity. Through an analysis, its strengths and weaknesses in terms of data protection 10 are described. We also analyze how companies are increasingly taking personal data privacy into 11 consideration, in order to minimize unwanted information leaks. Finally, a set of initial security 12 recommendations for the use of these kinds of devices are provided to the reader.Publicación A Cloud Game-based Educative Platform Architecture: the CyberScratch Project(MDPI, 2021) Utrilla, Alejandro; Tobarra Abad, María de los Llanos; Robles Gómez, Antonio; Pastor Vargas, Rafael; Hernández Berlinches, RobertoThe employment of modern technologies is widespread in our society, so the inclusion of practical activities for education has become essential and useful at the same time. These activities are more noticeable in Engineering, in areas such as cybersecurity, data science, artificial intelligence, etc. Additionally, these activities acquire even more relevance with a distance education methodology, as our case is. The inclusion of these practical activities has clear advantages , such as (1) promoting critical thinking and (2) improving students’ abilities and skills for their professional careers. There are several options, such as the use of remote and virtual laboratories, virtual reality and gamebased platforms, among others. This work addresses the development of a new cloud game-based educational platform, which defines a modular and flexible architecture (using light containers). This architecture provides interactive and monitoring services and data storage in a transparent way. The platform uses gamification to integrate the game as part of the instructional process. The CyberScratch project is a particular implementation of this architecture focused on cybersecurity game-based activities. The data privacy management is a critical issue for these kinds of platforms, so the architecture is designed with this feature integrated in the platform components. To achieve this goal, we first focus on all the privacy aspects for the data generated by our cloud game-based platform, by considering the European legal context for data privacy following GDPR and ISO/IEC TR 20748-1:2016 recommendations for Learning Analytics (LA). Our second objective is to provide implementation guidelines for efficient data privacy management for our cloud game-based educative platform. All these contributions are not found in current related works. The CyberScratch project, which was approved by UNED for the year 2020, considers using the xAPI standard for data handling and services for the game editor, game engine and game monitor modules of CyberScratch. Therefore, apart from considering GDPR privacy and LA recommendations, our cloud game-based architecture covers all phases from game creation to the final users’ interactions with the game.Publicación Internet of Things Remote Laboratory for MQTT remote experimentation(Springer Link, 2023) Anhelo, Jesús; Robles Gómez, Antonio; Martín Gutiérrez, SergioRemote laboratories have matured substantially and have seen widespread adoption across universities globally. This paper delineates the design and implementation of a remote laboratory for Industry 4.0, specifically for Internet of Things. It employs Raspberry Pi and ESP8266 microcontrollers, to bolster online Internet of Things (IoT) learning and experimentation platforms. Such platforms hold significant value in delivering high-quality online education programs centered on IoT. Students have access to a web interface where they can write Arduino code to program the behavior of each one of the nodes of an Internet of Things scenario. This setup allows them to remotely program three NodeMCU boards in a manner akin to the usage of the Arduino IDE connected to an Arduino board locally. The system offers the ability to compile and upload code, complete with error notifications. Additionally, it furnishes several functionalities such as the ability to load new local code, save the authored code to one's personal computer, load predefined examples, access a serial monitor, and avail the Node Red platform. This amalgamation of features promises to offer a comprehensive and interactive remote learning experience for students engaging with IoT technologies.Publicación Researchers’ perceptions of DH trends and topics in the English and Spanish-speaking community. DayofDH data as a case study(Jagiellonian University & Pedagogical University (Cracovia), 2016-07-22) González-Blanco García, Elena; Rio Riande, Gimena del; Robles Gómez, Antonio; Ros Muñoz, Salvador; Hernández Berlinches, Roberto; Tobarra Abad, María de los Llanos; Caminero Herráez, Agustín Carlos; Pastor Vargas, RafaelPublicación Detection of Cerebral Ischaemia using Transfer Learning Techniques(IEEE) Antón Munárriz, Cristina; Haut, Juan M.; Paoletti, Mercedes E.; Benítez Andrades, José Alberto; Pastor Vargas, Rafael; Robles Gómez, AntonioCerebrovascular accident (CVA) or stroke is one of the main causes of mortality and morbidity today, causing permanent disabilities. Its early detection helps reduce its effects and its mortality: time is brain. Currently, non-contrast computed tomography (NCCT) continues to be the first-line diagnostic method in stroke emergencies because it is a fast, available, and cost-effective technique that makes it possible to rule out haemorrhage and focus attention on the ischemic origin, that is, due to obstruction to arterial flow. NCCT are quantified using a scoring system called ASPECTS (Alberta Stroke Program Early Computed Tomography Score) according to the affected brain structures. This paper aims to detect in an initial phase those CTs of patients with stroke symptoms that present early alterations in CT density using a binary classifier of CTs without and with stroke, to alert the doctor of their existence. For this, several well-known neural network architectures are implemented in the ImageNet challenges (VGG, NasNet, ResNet and DenseNet), with 3D images, covering the entire brain volume. The training results of these networks are exposed, in which different parameters are tested to obtain maximum performance, which is achieved with a DenseNet3D network that achieves an accuracy of 98% in the training set and 95% in the test setPublicación Analyzing the Users’ Acceptance of an IoT Cloud Platform using the UTAUT/TAM Model(Institute of Electrical and Electronics Engineers, 2021) Haut, Juan M.; Robles Gómez, Antonio; Tobarra Abad, María de los Llanos; Pastor Vargas, Rafael; Hernández Berlinches, RobertoAntonio Robles-Gómez, Llanos Tobarra, Rafael Pastor-Vargas, Roberto Hernández, Juan M. Haut; Título:; Publicación: . ISSN (https://doi.org/10.1109/ACCESS.2021.3125497);Publicación Dataset Generation and Study of Deepfake Techniques(Springer, 2023) Falcón López, Sergio Adrián; Robles Gómez, Antonio; Tobarra Abad, María de los Llanos; Pastor Vargas, RafaelThe consumption of multimedia content on the Internet has nowadays been expanded exponentially. These trends have contributed to fake news can become a very high influence in the current society. The latest techniques to influence the spread of digital false information are based on methods of generating images and videos, known as Deepfakes. This way, our research work analyzes the most widely used Deepfake content generation methods, as well as explore different conventional and advanced tools for Deepfake detection. A specific dataset has also been built that includes both fake and real multimedia contents. This dataset will allow us to verify whether the used image and video forgery detection techniques can detect manipulated multimedia content.Publicación Emulating and Evaluating Virtual Remote Laboratories for Cybersecurity(MDPI, 2020) Cano, Jesús; Robles Gómez, Antonio; Tobarra Abad, María de los Llanos; Pastor Vargas, Rafael; Hernández Berlinches, RobertoOur society is nowadays evolving towards a digital era, due to the extensive use of computer technologies and their interconnection mechanisms, i.e., social networks, Internet resources, IoT services, etc. This way, new threats and vulnerabilities appear. Therefore, there is an urgent necessity of training students in the topic of cybersecurity, in which practical skills have to be acquired. In distance education, the inclusion of on-line resources for hands-on activities in its curricula is a key step in meeting that need. This work presents several contributions. First, the fundamentals of a virtual remote laboratory hosted in the cloud are detailed. This laboratory is a step forward since the laboratory combines both virtualization and cloud paradigms to dynamically create emulated environments. Second, this laboratory has also been integrated into the practical curricula of a cybersecurity subject, as an additional on-line resource. Third, the students’ traceability, in terms of their interactions with the laboratory, is also analyzed. Psychological TAM/UTAUT factors (perceived usefulness, estimated effort, social influence, attitude, ease of access) that may affect the intention of using the laboratory are analyzed. Fourth, the degree of satisfaction is analyzed with a great impact, since the mean values of these factors are most of them higher than 4 points out of 5. In addition to this, the students’ acceptance of the presented technology is exhaustively studied. Two structural equation models have been hypothesized and validated. Finally, the acceptance of the technology can be concluded as very good in order to be used in @? other Engineering contexts. In this sense, the calculated statistical values for the improved proposed model are within the expected ranges of reliability (X2 = 0.6, X2/DF = 0.3, GFI = 0.985, CIF = 0.985, RMSEA = 0) by considering the literaturePublicación Easy Development of Industry 4.0 Remote Labs(MDPI, 2024) Rejón Gómez, Carlos; Martín Gutiérrez, Sergio; Robles Gómez, AntonioAcquiring hands-on skills is nowadays key for Engineers today in the context of Industry 1 4.0. However, it is not always possible to do this in person. Therefore, it is essential to be able to do 2 this from a remote location. To support the development of remote labs for experimentation, this work 3 proposes the development of an open Industry 4.0 remote platform, which can be easily configured 4 and scaled to develop new remote labs for IoT (Internet of Things), cybersecurity, perception systems, 5 robotics, AI (Artificial Intelligence), etc. Over time, these capabilities will enable the development of 6 sustainable Industry 4.0 remote labs. These labs will coexist on the same Industry 4.0 platform, as 7 our proposed Industry 4.0 remote platform is capable of connecting multiple heterogeneous types 8 of devices for remote programming. In this way, it is possible to easily design open remote labs for 9 the digital transition to Industry 4.0 in a standardized way, which is the main research goal of our 10 In4Labs project. Several users are already conducting a series of IoT experiments within our remote 11 Industry 4.0 platform, providing useful recommendations to be included in future versions of the 12 platform.Publicación Easy Development of Industry 4.0 Remote Labs(MDPI, 2024) Rejón Gómez, Carlos; Martín Gutiérrez, Sergio; Robles Gómez, AntonioAcquiring hands-on skills is nowadays key for Engineers today in the context of Industry 1 4.0. However, it is not always possible to do this in person. Therefore, it is essential to be able to do 2 this from a remote location. To support the development of remote labs for experimentation, this work 3 proposes the development of an open Industry 4.0 remote platform, which can be easily configured 4 and scaled to develop new remote labs for IoT (Internet of Things), cybersecurity, perception systems, 5 robotics, AI (Artificial Intelligence), etc. Over time, these capabilities will enable the development of 6 sustainable Industry 4.0 remote labs. These labs will coexist on the same Industry 4.0 platform, as 7 our proposed Industry 4.0 remote platform is capable of connecting multiple heterogeneous types 8 of devices for remote programming. In this way, it is possible to easily design open remote labs for 9 the digital transition to Industry 4.0 in a standardized way, which is the main research goal of our 10 In4Labs project. Several users are already conducting a series of IoT experiments within our remote 11 Industry 4.0 platform, providing useful recommendations to be included in future versions of the 12 platform.