Persona: Robles Gómez, Antonio
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-5181-0199
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Robles Gómez
Nombre de pila
Antonio
Nombre
3 resultados
Resultados de la búsqueda
Mostrando 1 - 3 de 3
Publicación Comprehensive AI-Driven Privacy Risk Assessment in Mobile Apps and Social Networks(Springer, 2025-09-29) Blanco Aza, Daniel; Robles Gómez, Antonio; Pastor Vargas, Rafael; Tobarra Abad, María de los Llanos; Vidal Balboa, Pedro; Méndez-Suárez, MarianoThe pervasive use of mobile applications and social networks has intensified privacy concerns due to the widespread collection, processing, and sharing of personal data. To address these challenges, we introduce SafeMountain, a novel AI-driven framework designed to systematically quantify, evaluate, and visualize privacy risks in mobile apps and social platforms, ensuring strict compliance with international regulations, particularly the General Data Protection Regulation (GDPR). SafeMountain combines static and dynamic code analyses to scrutinize real-world data handling practices and detect potential privacy breaches. It also employs advanced Natural Language Processing (NLP) techniques for automated interpretation and evaluation of privacy policies and Terms of Service. By mapping textual policy disclosures to actual app permissions and behaviors, it identifies discrepancies and highlights potential non-compliance and data misuse. The framework introduces an objective risk scoring mechanism aligned with international standards and regulatory requirements, offering a structured methodology to classify and visualize privacy risks. This risk assessment spans multiple dimensions (predictability, manageability, and disassociability) leveraging privacy engineering principles and regulatory risk factors, and uses an intuitive traffic-light system (Green, Yellow, Red) to enhance transparency and user comprehension. SafeMountain addresses major research gaps, notably the absence of standardized privacy risk scoring and comprehensive visualization tools. By delivering actionable insights into permission consistency, policy transparency, compliance gaps, and data leakage vulnerabilities, it empowers users, developers, and organizations to manage privacy risks proactively. Ultimately, SafeMountain fosters trust through more transparent and accountable data privacy practices across digital ecosystems.Publicación Internet of Things Platform for Assessment and Research on Cybersecurity of Smart Rural Environments(MDPI, 2025-08-01) Sernández Iglesias, Daniel; Tobarra Abad, María de los Llanos; Pastor Vargas, Rafael; Robles Gómez, Antonio; Vidal Balboa, Pedro; Sarraipa, João; Instituto Nacional de Ciberseguridad (INCIBE); (NextGenerationEU/PRTR) Unión EuropeaRural regions face significant barriers to adopting IoT technologies, due to limited connectivity, energy constraints, and poor technical infrastructure. While urban environments benefit from advanced digital systems and cloud services, rural areas often lack the necessary conditions to deploy and evaluate secure and autonomous IoT solutions. To help overcome this gap, this paper presents the Smart Rural IoT Lab, a modular and reproducible testbed designed to replicate the deployment conditions in rural areas using open-source tools and affordable hardware. The laboratory integrates long-range and short-range communication technologies in six experimental scenarios, implementing protocols such as MQTT, HTTP, UDP, and CoAP. These scenarios simulate realistic rural use cases, including environmental monitoring, livestock tracking, infrastructure access control, and heritage site protection. Local data processing is achieved through containerized services like Node-RED, InfluxDB, MongoDB, and Grafana, ensuring complete autonomy, without dependence on cloud services. A key contribution of the laboratory is the generation of structured datasets from real network traffic captured with Tcpdump and preprocessed using Zeek. Unlike simulated datasets, the collected data reflect communication patterns generated from real devices. Although the current dataset only includes benign traffic, the platform is prepared for future incorporation of adversarial scenarios (spoofing, DoS) to support AI-based cybersecurity research. While experiments were conducted in an indoor controlled environment, the testbed architecture is portable and suitable for future outdoor deployment. The Smart Rural IoT Lab addresses a critical gap in current research infrastructure, providing a realistic and flexible foundation for developing secure, cloud-independent IoT solutions, contributing to the digital transformation of rural regions.Publicación Privacy Analysis in Mobile Apps and Social Networks Using AI Techniques(IEEE - Institute of Electrical and Electronics Engineers, 2024-09-17) Blanco Aza, Daniel; Robles Gómez, Antonio; Pastor Vargas, Rafael; Tobarra Abad, María de los Llanos; Vidal Balboa, Pedro; Méndez Suárez, MarianoIn the current landscape of mobile applications and social networks, privacy concerns have become paramount due to the extensive collection and processing of personal data. Therefore, this paper presents a comprehensive review of the state-of-the-art on automated privacy risk analysis in mobile applications and social networks. This review includes various methodologies, tools and frameworks that use ML and NLP systems to assess and ensure compliance with privacy regulations, such as the GDPR. Through a careful application of the PRISMA methodology, key studies have been systematically analyzed. Our findings reveal significant progress in the integration of automated techniques for assessing privacy risks.