Persona:
Pastor Vargas, Rafael

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0002-4089-9538
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Pastor Vargas
Nombre de pila
Rafael
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 18
  • Publicación
    A Cloud Game-based Educative Platform Architecture: the CyberScratch Project
    (MDPI, 2021) Utrilla, Alejandro; Tobarra Abad, María de los Llanos; Robles Gómez, Antonio; Pastor Vargas, Rafael; Hernández Berlinches, Roberto
    The employment of modern technologies is widespread in our society, so the inclusion of practical activities for education has become essential and useful at the same time. These activities are more noticeable in Engineering, in areas such as cybersecurity, data science, artificial intelligence, etc. Additionally, these activities acquire even more relevance with a distance education methodology, as our case is. The inclusion of these practical activities has clear advantages , such as (1) promoting critical thinking and (2) improving students’ abilities and skills for their professional careers. There are several options, such as the use of remote and virtual laboratories, virtual reality and gamebased platforms, among others. This work addresses the development of a new cloud game-based educational platform, which defines a modular and flexible architecture (using light containers). This architecture provides interactive and monitoring services and data storage in a transparent way. The platform uses gamification to integrate the game as part of the instructional process. The CyberScratch project is a particular implementation of this architecture focused on cybersecurity game-based activities. The data privacy management is a critical issue for these kinds of platforms, so the architecture is designed with this feature integrated in the platform components. To achieve this goal, we first focus on all the privacy aspects for the data generated by our cloud game-based platform, by considering the European legal context for data privacy following GDPR and ISO/IEC TR 20748-1:2016 recommendations for Learning Analytics (LA). Our second objective is to provide implementation guidelines for efficient data privacy management for our cloud game-based educative platform. All these contributions are not found in current related works. The CyberScratch project, which was approved by UNED for the year 2020, considers using the xAPI standard for data handling and services for the game editor, game engine and game monitor modules of CyberScratch. Therefore, apart from considering GDPR privacy and LA recommendations, our cloud game-based architecture covers all phases from game creation to the final users’ interactions with the game.
  • Publicación
    Forensic Analysis Laboratory for Sport Devices: A Practical Case of Use
    (MDPI, 2023) Donaire Calleja, Pablo; Robles Gómez, Antonio; Tobarra Abad, María de los Llanos; Pastor Vargas, Rafael
    At present, the mobile device sector is experiencing significant growth. In particular, wear- 1 able devices have become a common element in society. This fact implies that users unconsciously 2 accept the constant dynamic collection of private data about their habits and behaviours. Therefore, 3 this work focuses on highlighting and analyzing some of the main issues that forensic analysts face 4 in this sector, such as the lack of standard procedures for analysis and the common use of private 5 protocols for data communication. Thus, it is almost impossible for a digital forensic specialist to 6 fully specialize in the context of wearables, such as smartwatches for sports activities. With the aim 7 of highlighting these problems, a complete forensic analysis laboratory for such sports devices is 8 described in this paper. We selected a smartwatch belonging to the Garmin Forerunner Series, due to 9 its great popularity. Through an analysis, its strengths and weaknesses in terms of data protection 10 are described. We also analyze how companies are increasingly taking personal data privacy into 11 consideration, in order to minimize unwanted information leaks. Finally, a set of initial security 12 recommendations for the use of these kinds of devices are provided to the reader.
  • Publicación
    Analyzing the Users’ Acceptance of an IoT Cloud Platform using the UTAUT/TAM Model
    (Institute of Electrical and Electronics Engineers, 2021) Haut, Juan M.; Robles Gómez, Antonio; Tobarra Abad, María de los Llanos; Pastor Vargas, Rafael; Hernández Berlinches, Roberto
    Antonio Robles-Gómez, Llanos Tobarra, Rafael Pastor-Vargas, Roberto Hernández, Juan M. Haut; Título:; Publicación: . ISSN (https://doi.org/10.1109/ACCESS.2021.3125497);
  • Publicación
    A WoT Platform for Supporting Full-Cycle IoT Solutions from Edge to Cloud Infrastructures: A Practical Case
    (MDPI, 2020-07-05) Pastor Vargas, Rafael; Tobarra Abad, María de los Llanos; Robles Gómez, Antonio; Martín Gutiérrez, Sergio; Hernández Berlinches, Roberto; Cano, Jesús; MDPI; https://orcid.org/0000-0001-6926-1311
    Internet of Things (IoT) learning involves the acquisition of transversal skills ranging from the development based on IoT devices and sensors (edge computing) to the connection of the devices themselves to management environments that allow the storage and processing (cloud computing) of data generated by sensors. The usual development cycle for IoT applications consists of the following three stages: stage 1 corresponds to the description of the devices and basic interaction with sensors. In stage 2, data acquired by the devices/sensors are employed by communication models from the origin edge to the management middleware in the cloud. Finally, stage 3 focuses on processing and presentation models. These models present the most relevant indicators for IoT devices and sensors. Students must acquire all the necessary skills and abilities to understand and develop these types of applications, so lecturers need an infrastructure to enable the learning of development of full IoT applications. AWeb of Things (WoT) platform named Labs of Things at UNED (LoT@UNED) has been used for this goal. This paper shows the fundamentals and features of this infrastructure, and how the different phases of the full development cycle of solutions in IoT environments are implemented using LoT@UNED. The proposed system has been tested in several computer science subjects. Students can perform remote experimentation with a collaborativeWoT learning environment in the cloud, including the possibility to analyze the generated data by IoT sensors.
  • Publicación
    Automated IoT vulnerability classification using Deep Learning
    (2025-07) Sernández Iglesias, Daniel; Enrique Fernández Morales,; Garcia Merino, Jose Carlos; Tobarra Abad, María de los Llanos; Pastor Vargas, Rafael; Robles Gómez, Antonio; Sarraipa, Joao
    Technological advancements in the development of low-power chips have enabled everyday objects to connect to the Internet, giving rise to the concept known as the Internet of Things (IoT). It is currently estimated that there are approximately 16 billion IoT connections worldwide, a figure expected to double by 2030. However, this rapid growth of the IoT ecosystem has introduced new vulnerabilities that could be exploited by malicious actors. Since many IoT devices handle personal and sensitive information, threats to these devices can have severe consequences. Moreover, a series of cybersecurity incidents could undermine public trust in IoT technology, potentially delaying its widespread adoption across various sectors.Common Vulnerabilities and Exposures records (also known by their acronym as CVEs) is a public cataloging system designed to identify and list known security vulnerabilities in software and hardware products. This system is developed and maintained by MITRE with the support of the cybersecurity community and sponsored by the U.S. Department of Homeland Security (DHS) through the Cybersecurity and Infrastructure Security Agency (CISA). CVE provides a reference database that enables security researchers, manufacturers, and organizational security managers to more effectively identify and address security issues.In our study, we have focused on CVEs exclusively oriented towards IoT systems, with the aim of analyzing the main vulnerabilities detected from 2010 to nowadays as a basis for detecting the main attack vectors in IoT systems. As part of this effort we have created the following dataset. CVEs records include various metrics such as: - Common Weakness Enumeration (CWE), mainly focused on technical classification of vulnerabilities. - Common Vulnerability Scoring System (CVSS), which reports about different metrics such as the attack vector, the severity of the vulnerability or the impact level of the exploitation of the vulnerability. This is one of the most informative metric. - Stakeholder-Specific Vulnerability Categorization (SSVC), oriented towards help cybersecurity team to handle properly the vulnerability. These metrics allow security teams on the one hand to prioritize, such vulnerabilities within their security program, evaluating efforts to mitigate them. But according to our analysis of our dataset, around the 14% of CVEs records do not contain any metric. Around the 83% of CVEs registries contain CWE metric (an ID or its textual description). This metric, as it is explained before, only reports about the type of vulnerability from a technic point of view. Only the 10% of CVEs registries contain SSVC metrics. And CVSS, in its different versions, appears only in the 40% of the studied CVEs registries. Additionally, most of studied records includes metrics a retrospectively, several weeks or months later the vulnerability is disclosed. Thus, cybersecurity teams must trust their previous knowledge in order to distinguish which vulnerabilities are relevant and which not.To tackled this situation, our proposal is focused in the application of Deep Learning techniques in order to classify the severity of CVE records from its textual description. Textual description is a mandatory field that is present in all CVEs records. To achieve this objective, we trained the BiLSTM algorithm using the CVE records with CVSS metrics and its description field; and performed a comparative study of different hyperparameter configurations to find the optimal configuration. The metrics for model evaluation that have been studied are accuracy, loss and F1-score.
  • Publicación
    Students’ Acceptance and Tracking of a New Container-Based Virtual Laboratory
    (MDPI, 2020) Cano, Jesús; Tobarra Abad, María de los Llanos; Robles Gómez, Antonio; Pastor Vargas, Rafael; Hernández Berlinches, Roberto; Duque Fernández, Andrés
    Presently, the ever-increasing use of new technologies helps people to acquire additional skills for developing an applied critical thinking in many contexts of our society. When it comes to education, and more particularly in any Engineering subject, practical learning scenarios are key to achieve a set of competencies and applied skills. In our particular case, the cybersecurity topic with a distance education methodology is considered and a new remote virtual laboratory based on containers will be presented and evaluated in this work. The laboratory is based on the Linux Docker virtualization technology, which allows us to create consistent realistic scenarios with lower configuration requirements for the students. The laboratory is comparatively evaluated with our previous environment, LoT@UNED, from both the points of view of the students’ acceptance with a set of UTAUT models, and their behavior regarding evaluation items, time distribution, and content resources. All data was obtained from students’ surveys and platform registers. The main conclusion of this work is that the proposed laboratory obtains a very high acceptance from the students, in terms of several different indicators (perceived usefulness, estimated effort, social influence, attitude, ease of access, and intention of use). Neither the use of the virtual platform nor the distance methodology employed affect the intention to use the technology proposed in this work
  • Publicación
    Web of Things Platforms for Distance Learning Scenarios in Computer Science Disciplines: A Practical Approach
    (MDPI, 2019) Tobarra Abad, María de los Llanos; Robles Gómez, Antonio; Pastor Vargas, Rafael; Hernández Berlinches, Roberto; Cano, Jesús; López, Daniel; https://orcid.org/0000-0001-6926-1311
    Problem-based learning is a widely used learning methodology in the field of technological disciplines, especially in distance education environments. In these environments, the most used tools, which provide learning scenarios, are remote and virtual laboratories. Internet of Things (IoT) devices can be used as remote or virtual laboratories. In addition to this, they can be organized/orchestrated to build remote maker spaces through the web. These types of spaces are called the Web of Things (WoT). This paper proposes the use of these types of spaces and their integration as practical activities into the curricula of technological subjects. This approach will allow us to achieve two fundamental objectives: (1) To improve the academic results (grades) of students; and (2) to increase engagement and interest of students in the studied technologies, including IoT devices. These platforms are modeled using archetypes based on different typologies and usage scenarios. In particular, these usage scenarios will implement a learning strategy for each problem to be solved. The current work shows the evolution of these archetypes and their application in the teaching of disciplines/subjects defined in computer science, such as distributed computing and cybersecurity.
  • Publicación
    Privacy Analysis in Mobile Apps and Social Networks Using AI Techniques
    (IEEE - Institute of Electrical and Electronics Engineers, 2024-09-17) Blanco Aza, Daniel; Robles Gómez, Antonio; Pastor Vargas, Rafael; Tobarra Abad, María de los Llanos; Vidal Balboa, Pedro; Méndez Suárez, Mariano
    In the current landscape of mobile applications and social networks, privacy concerns have become paramount due to the extensive collection and processing of personal data. Therefore, this paper presents a comprehensive review of the state-of-the-art on automated privacy risk analysis in mobile applications and social networks. This review includes various methodologies, tools and frameworks that use ML and NLP systems to assess and ensure compliance with privacy regulations, such as the GDPR. Through a careful application of the PRISMA methodology, key studies have been systematically analyzed. Our findings reveal significant progress in the integration of automated techniques for assessing privacy risks.
  • Publicación
    Researchers’ perceptions of DH trends and topics in the English and Spanish-speaking community. DayofDH data as a case study
    (Jagiellonian University & Pedagogical University (Cracovia), 2016-07-22) González-Blanco García, Elena; Rio Riande, Gimena del; Robles Gómez, Antonio; Ros Muñoz, Salvador; Hernández Berlinches, Roberto; Tobarra Abad, María de los Llanos; Caminero Herráez, Agustín Carlos; Pastor Vargas, Rafael
  • Publicación
    Teaching cloud computing using Web of Things devices
    (IEEE, 2018) Carrillo, J. Cano; Pastor Vargas, Rafael; Romero Hortelano, Miguel; Tobarra Abad, María de los Llanos; Hernández Berlinches, Roberto
    This work deals with the teaching of the innovative technology, named cloud computing, using the Web of Things (WoT) platform model based on web services. These services are designed and programmed by the students to handle embedded hardware devices (things) on Internet. The course is carried out within a makerspace where our students can take advantage of valuable on-line tools which are available in a collaborative learning environment. The introduction of these innovative technological elements improves the students' interest and engagement leading to achieve better learning results.