Persona:
Fernández Hernando, Pilar

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Fernández Hernando
Nombre de pila
Pilar
Nombre

Resultados de la búsqueda

Mostrando 1 - 10 de 17
  • Publicación
    Evaluation of total phenol pollution in water of San Martin Canal from Santiago del Estero, Argentina.
    (Elsevier, 2018-05) Acosta Rosales, Carina Andrea; López, Clara; Paniagua González, Gema; Garcinuño Martínez, Rosa Mª; Fernández Hernando, Pilar
    Santiago del Estero is a province located in northwestern Argentina. The Dulce River is used for irrigation through a vast network of channels and ditches, including the San Martin Canal (SMC), which crosses the capital city of Santiago del Estero. This canal's water is used for drinking, as well as recreational use for the general population. However, this river has been seriously polluted for several decades. The present study focuses on the identification and the quantification of the water pollution levels of total phenols in the SMC according to the seasonal periods. Water samples from various areas of the canal in different months of the year, extending from December to September, were collected for analysis. Additionally, the concentration of total dissolved solids (TDS), chlorides, sulphates, nitrites and organic matter, as well as water hardness and alkalinity, were analysed in order to conduct a more complete study of the contamination of this area. The results showed a worrying total phenol concentration that exceeded the limit set by Argentine legislation for drinking water, as well as water for recreational use (5 μg/L). The total phenol (TP) concentration was directly determined by a molecular absorption spectroscopy method based on a new flow injection analysis system (FIA). Under the selected experimental conditions, the detection and quantification limits were 0.0490 and 0.1633 μg/mL, respectively. The developed method provides a number of improvements related to the speed of analysis, the restricted consumption of the reagents and sample volumes and the unnecessary sample treatment that contribute to environmentally friendly analytical chemistry. The results showed that TP make a significant contribution in the SMC pollution, especially during the months of April (400 ± 110 μg/L) and September (240 ± 20 μg/L). A high sulphate concentration that was higher than the limit allowed by the legislation was also found.
  • Publicación
    Statistical evaluation of fluoride contamination in groundwater resources of Santiago del Estero Province , Argentina
    (Elsevier, 2020-11) Rondano Gómez, Karina del Valle; López Pasquali, C. E.; Paniagua González, Gema; Fernández Hernando, Pilar; Garcinuño Martínez, Rosa Mª
    This study investigates the suitability of statistical techniques for evaluating the fluoride content and the groundwater quality from Robles Department (RD) and Banda Department (BD) areas in Santiago del Estero (Argentina). Groundwater mineralization is driven by many processes such as, weathering of volcanic products, geothermal activity and human activities. The original matrix consisted of 9 parameters estimated (fluoride content, pH, conductivity, environmental and water temperatures, total dissolved solids, chloride concentration, hardness and alkalinity) from 110 groundwater samples collected of 23 selected scattered rural areas. Groundwater samples were obtained by sampling in wells at different depths. The fluoride levels were determined by a standard colorimetric method in two seasonal periods, dry (from April to September) and rainy (from October to March). Parameters such as pH and total dissolved solids (TDS) reached their highest values in the rainy season; while the temperature, alkalinity, chloride concentration and hardness did it in the dry season. In both seasons, the environmental temperature average was 22 °C. Regarding the fluoride content, approximately the fifty percent of the analyzed groundwater samples exceeded the upper limit (1.0 mg/L) established by the current legislation, obtaining concentration levels between 0.01-2.80 mg/L. This study demonstrates the usefulness of univariate (quartiles calculation, interquartile range IQR) and multivariate statistical method of principal component analysis (PCA) and clusters to establish a better understanding of the environmental status of the region studied and the degree of pollution.
  • Publicación
    An optical sensor for the determination of digoxin in serum samples based on a molecularly imprinted polymer membrane.
    (Elsevier, 2009-04) Durand Alegría, Jesús Senén; Paniagua González, Gema; Fernández Hernando, Pilar
    This paper reports the synthesis and testing of a molecularly imprinted polymer membrane for digoxin analysis. Digoxin-specific bulk polymer was obtained by the UV initiated co-polymerisation of methacrylic acid and ethylene glycol dimethacrylate in acetonitrile as porogen. After extracting the template analyte, the ground polymer particles were mixed with plasticizer polyvinyl chloride to form a MIP membrane. A reference polymer membrane was prepared from the same mixture of monomers but with no template. The resultant membrane morphologies were examined by scanning electron microscopy. The imprinted membrane was tested as the recognition element in a digoxin-sensitive fluorescence sensor; sensor response was measured using standard solutions of digoxin at concentrations of up to 4 × 10−3 mg L−1. The detection limit was 3.17 × 10−5 mg L−1. Within- and between-day relative standard deviations RSD (n = 5) were in the range 4.5–5.5% and 5.5–6.5% respectively for 0 and 1 × 10−3 mg L−1 digoxin concentrations. A selectivity study showed that compounds of similar structure to digoxin did not significantly interfere with detection for interferent concentrations at 10, 30 and 100 times higher than the digoxin concentration. This simply manufactured MIP membrane showed good recognition characteristics, a high affinity for digoxin, and provided satisfactory results in analyses of this analyte in human serum.
  • Publicación
    Methacrylic acid-ethylene glycol dimethacrylate polymeric sorbent for the removal of estrogens from water
    (['Estrogens', 'Removal', 'Polymer', 'Sorbent', 'Waters', 'Balaban Publishers – Desalination Publications'], 2018-11) Gallego, Alejandrina; Bravo Yagüe, Juan Carlos; Paniagua González, Gema; Fernández Hernando, Pilar; Garcinuño Martínez, Rosa Mª
    The presence of estrogens in environmental waters can cause adverse effects to aquatic organisms. In the last years, diverse researches have been focussed on the development of cost-effective methods for the removal of these compounds in water. In this paper, a series of methacrylic acid-ethylene glycol dimethacrylate polymers with different monomers ratio were synthesised by photochemical (UV irradiation at 365 nm) or thermal (oven at 60°C) initiation. Batch and continuous flow experiments were carried out to evaluate the capacity of these polymers to adsorb estradiol (E2), ethinylestradiol (EE2) and dienestrol (DEN). Adsorption isotherm studies revealed that Langmuir isotherm model was fitted with a better correlation than Freundlich isotherm. Finally, continuous flow experiments were carried out by microcolumn studies to check the suitability of the polymeric sorbent for the removal of estrogens from real water samples. When continuous removal experiments at 8 mL min–1 flow rate were carried out, breakthrough adsorption capacities of 28.5, 38 and 69.7 mg g–1 for E2, EE2 and DEN, respectively, were achieved.
  • Publicación
    Occurrence of common plastic additives and contaminants in raw, steamed and canned mussel samples from different harvesting areas using MSPDHPLC methodology
    (Elsevier, 2024-04) Garrido Gamarro, Esther; Soliz Rojas, Dulce Lucy; Paniagua González, Gema; Fernández Hernando, Pilar; Garcinuño Martínez, Rosa Mª
    Microplastics are a complex mix of chemicals containing polymers and certain plastic additives such as bisphenols and phthalates. These particles are porous materials that can also sorb contaminants from their surroundings, and leach chemicals from the particle under certain circumstances. Aquatic animals can ingest microplastic particles, which mostly bioaccumulate in the gastrointestinal tract of animals. In terms of dietary exposure, small animals consumed whole such as mussels, contribute more to the dietary intake of microplastic particles. Plastic additives and contaminants are not chemically bound to the polymers, and certain processing methods or cooking processes result in the release of these chemicals that leach from the plastic particles, leaving them more available for absorption when ingested. Analytical methods are crucial for a better understanding of the occurrence of plastic additives and contaminants in aquatic products, and to know certain circumstances and treatments that influence human exposure. This study uses an MSPD-HPLC methodology for the simultaneous determination of 9 analytes (BPA, BPF, BPS, DEP, DBP, DEHP, DDD, DDT, and DDE) analyzing, for the first time, the occurrence of these chemicals in raw, steamed and canned mussels of two different harvesting areas (Atlantic and the Mediterranean), becoming one of the most efficient methodologies for determining the presence of these analytes in very complex food matrices, able to define the changes in cooking and processing activities. The results showed that the heat and pressure treatment could influence the migration of plastic additives from microplastic particles present in mussels to the cooking liquids.
  • Publicación
    Determination of digoxin in serum samples using a flow-through fluorosensor based on a molecularly imprinted polymer
    (Elsevier, 2008-06-15) Durand Alegría, Jesús Senén; Paniagua González, Gema; Fernández Hernando, Pilar
    This work describes the development of a competitive flow-through FIA assay for digoxin using a molecularly imprinted polymer (MIP) as the recognition phase. In previous work, a number of non-covalent imprinted polymers were synthesised by “bulk” polymerisation. The digoxin binding and elution characteristics of these MIPs were then evaluated to obtain a highly selective material for integration into a sensor. The optimum MIP was synthesised by photo-initiated polymerisation of a mixture containing digoxin, MAA, EDGMA and AIBN in acetonitrile. The bulk polymer was ground and sieved and the template removed by Soxhlet extraction in MeOH/ACN. The MIP was packed into a flow cell and placed in a spectrofluorimeter to integrate the reaction and detection systems. The physical and chemical variables involved in digoxin determination by the sensor (nature and concentration of solution, flow rates, etc.) were optimised. Binding with the non-imprinted polymer (NIP) was also analysed. The new fluorosensor showed high selectivity and sensitivity, a detection limit of 1.7 × 10−2 μg l−1, and high reproducibility (R.S.D. of 1.03% and 1.77% for concentrations of 1.0 × 10−3 and 4.0 × 10−3 mg l−1, respectively). Selectivity was tested by determining the cross-reactivity of several compounds with structures analogous to digoxin. Under the assay conditions used, in which the potential interfering compounds were in concentrations 100 times higher than that of the analyte, no interference was recorded. The proposed fluorosensor was successfully used to determine digoxin concentration of human serum samples.
  • Publicación
    Permanent oriented antibody immobilization for digoxin determination with a flow-through fluoroimmunosensor
    (Springer, 2003-02-28) Durand Alegría, Jesús Senén; Pérez Conde, Concepción; Fernández Hernando, Pilar; Paniagua González, Gema
    Digoxin is a very important compound in clinical chemistry and is indicated in the treatment of congestive heart failure and artery disease. The measurement of serum digoxin concentration is necessary owing to the narrow therapeutic range of this drug. Further, even with similar dosage regimens, the biological response of patients often results in very different concentrations of digoxin in serum. Concentrations of greater than 2.6 mmol/L are generally interpreted as toxic in adult patients. Most methods for digoxin determination are based on gas chromatography or radiochemical and enzymatic immunoassay techniques. However, some of these methods are tedious and difficult to automate. Nowadays, they are being replaced by more practical immunoassay techniques, involving, for example, fluorescent immunosensors that allow rapid, automated and selective digoxin determinations. This paper reports a new flow–through fluoroimmunosensor for digoxin determination, the function of which is based on antibodies immobilized on an inmunoreactor of controlled pore glass (CPG). The immunosensor has a detection limit of 1.20 μg/L and provides high reproducibility (RSD = 4.5% for a concentration of 0.0025 mg/L, and RSD = 6.7% for 0.01 mg/L). The optimum working concentration range was found to be 1.2×10-3 - 4.0×10-2 mg/L. The lifetime of the immunosensor was about 50 immunoassays, if stored unused its lifetime can be extended to three months. A sample speed of about 10–12 samples per hour can be attained. Possible interference from substances with structures similar to digoxin (morphine, heroine, tebaine, codeine, pentazocine and narcotine) was investigated. No cross-reactivity was seen at the highest digoxin:interferent ratio studied (1:100). The proposed fluoroimmunosensor was successfully used to determine digoxin concentrations in human serum samples.
  • Publicación
    Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area
    (Elsevier, 2022-08-07) Rios Fuster, Beatriz; Alomar, Carme; Deudero, Salud; Paniagua González, Gema; Soliz Rojas, Dulce Lucy; Fernández Hernando, Pilar; Garcinuño Martínez, Rosa Mª
    Microplastic (MP) ingestion, along with accumulated plasticizers such as bisphenol A (BPA), bisphenol F (BPF), and bisphenol S (BPS), and phthalates represented by diethyl phthalate (DEP), dibutyl phthalate (DBP) and bis (2-ethylhexyl) phthalate (DEHP), were quantified in bivalves, fish, and holothurians collected from a coastal pristine area at the western Mediterranean Sea. MP ingestion in sediment-feeders holothurians (mean value 12.67 ± 7.31 MPs/individual) was statistically higher than ingestion in bivalves and fish (mean 4.83 ± 5.35 and 3 ± 4.44 MPs/individual, respectively). The main ingested polymers were polyethylene, polypropylene, and polystyrene. The levels of BPS, BPF, and DEHP were highest in bivalves' soft tissue; BPA and DBP had the highest levels in the holothurians’ muscle. In addition, the levels of all plasticizers assessed were lowest in fish muscle; only BPA levels in fish were higher than in bivalves, with intermediate values between those of bivalves and holothurians. This study provides data on exposure to MPs and plasticizers of different species inhabiting Cabrera Marine Protected Area (MPA) and highlights the differences in MP ingestion and levels of plasticizers between species with different ecological characteristics and feeding strategies.
  • Publicación
    Identification and morphological characterization of different types of plastic microparticles
    (Elsevier, 2024-05-15) Soliz Rojas, Dulce Lucy; Paniagua González, Gema; Muñoz Arnanz, Juan; Bravo Yagüe, Juan Carlos; Fernández Hernando, Pilar; Garcinuño Martínez, Rosa Mª
    The knowledge of the polymeric composition of microplastics (MPs) is interesting because offers useful information on the resistance, durability, and degradability of these materials, also allowing progress in the control of this contamination. However, there is currently a lack of reliable standardized methods for the identification, and characterization of the plastic microparticles. This work uses different techniques in a complementary manner for the identification, and characterization of MPs that more frequently are found in the environment. A total of 10 types of plastics were collected (polystyrene (PS), polyethylene terephthalate (PETE), polyethylene (PE), high- and low-density polyethylene (HDPE and LDPE, respectively), polyvinyl chloride (PVC), polypropylene (PP), polytetrafluoroethylene (PTFE), Polyamide (PA, Nylon 6,6) and poly-carbonate (PC)) and their chemical identification were analyzed by reflectance-attenuated infrared (FTIR-ATR). Furthermore, the samples were observed using light microscopy, and scan-ning electron microscopy (SEM). Also, staining with 12 different dyes was performed to improve the identification of microplastics. The results of this study revealed that PETE, PE, HDPE and LDPE, whose SEM images exhibited smoothness and flat uniformity of their surface, were not (or less) susceptible to adsorb staining solutions while PP, PA, PVC, and PTFE, were capable of adsorbing the dye solutions.
  • Publicación
    Synthesis and characterization of a molecularly imprinted polymer for the determination of spiramycin in sheep milk
    (Elsevier, 2017-04-15) Durand Alegría, J.S.; García Mayor, M Asunción; Paniagua González, Gema; Fernández Hernando, Pilar; Garcinuño Martínez, Rosa Mª
    A series of molecularly imprinted polymers (MIPs) comprising reactionary sites which are complementary to macrolide antibiotic spiramycin (SPI) were synthetized by noncovalent bulk polymerization technique. MIPs were synthesized under different polymerization process and their recognition efficiency was evaluated in binding studies in comparison with non-imprinted polymers. The best MIP was morphologically characterized and equilibrium assays were carried out. The MIP was evaluated as a sorbent for extraction and preconcentration of SPI from aqueous and sheep milk samples, and an off-line MISPE method followed by high-performance liquid chromatography with UV diode-array detection was established. Good linearity were obtained for SPI in a range of 24–965 μg kg−1 and the average recoveries at three spiked levels in milk samples were higher than 90% (RSD < 5%). Limit of quantification was 24.1 μg kg−1. Cross-reactivity studies from other macrolides with similar structure were tested. The optimum imprinted polymer showed a good selectivity and affinity for SPI, demonstrating the potential of the proposed MISPE for rapid, sensitive and effective sample pretreatment for selective determination of SPI in sheep milk samples.