Persona:
González Boticario, Jesús

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0003-4949-9220
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
González Boticario
Nombre de pila
Jesús
Nombre

Resultados de la búsqueda

Mostrando 1 - 6 de 6
  • Publicación
    BIG-AFF: Exploring low cost and low intrusive infrastructures for affective computing in secondary schools
    (ACM, 2017-07-09) González Boticario, Jesús; Santos, Olga C.; Cabestrero Alonso, Raúl; Quirós Expósito, Pilar; Salmeron Majadas, Sergio; Uría Rivas, Raúl; Arevalillo Herráez, Miguel; Ferri, Francesc J.
    Recent research has provided solid evidence that emotions strongly affect motivation and engagement, and hence play an important role in learning. In BIG-AFF project, we build on the hypothesis that ``it is possible to provide learners with a personalised support that enriches their learning process and experience by using low intrusive (and low cost) devices to capture affective multimodal data that include cognitive, behavioural and physiological information''. In order to deal with the affect management complete cycle, thus covering affect detection, modelling and feedback, there is lack of standards and consolidated methodologies. Being our goal to develop realistic affect-aware learning environments, we are exploring different approaches on how these can be supported by either by traditional non-intrusive interaction sources or low intrusive and inexpensive sensing devices. In this work we describe the main issues involved in two user studies carried out with high school learners, highlight some open problems that arose when designing the corresponding experimental settings. In particular, the studies involved varied nature of information sources and each focused on one of the approaches. Our experience reflects the need to develop an extensive knowledge about the organization of this type of experiences that consider user-centric development and evaluation methodologies.
  • Publicación
    MAMIPEC - Affective modeling in inclusive personalized educational scenarios
    (IEEE Technical Committee on Learning Technology,, 2012) Santos, Olga C.; González Boticario, Jesús; Arevalillo Herráez, Miguel; Saneiro Silva, María del Mar; Cabestrero Alonso, Raúl; Campo Adrián, María del Campo; Manjarrés Riesco, Ángeles; Moreno Clarí, Paloma; Quirós Expósito, Pilar; Salmeron Majadas, Sergio
    There is agreement in the literature that affect influences learning. In turn, addressing affective issues in the recommendation process has shown their ability to increase the performance of recommender systems in non-educational scenarios. In our work, we combine both research lines and describe the SAERS approach to model affective educational recommendations. This affective recommendation model has been initially validated with the application of the TORMES methodology to specific educational settings. We report 29 recommendations elicited in 12 scenarios by applying this methodology. Moreover, a UML formalized version of the recommendations model which can describe the recommendations elicited is presented in the paper.
  • Publicación
    Supporting growers with recommendations in redvides: some human aspects involved
    (Springer Nature, 2014-10-10) Santos, Olga C.; Salmeron Majadas, Sergio; González Boticario, Jesús
    This paper discusses some human aspects that are to be considered when designing recommendations for RedVides, a cloud based networking environment that collects the status of the crop with sensors and can take decisions through corresponding actuators. The goal behind is to support growers in decision making processes, which can be benefited from collaborations among growers and with other stakeholders.
  • Publicación
    Challenges for Inclusive Affective Detection in Educational Scenarios
    (Springer Nature, 2013) Santos, Olga C.; Rodríguez Ascaso, Alejandro; González Boticario, Jesús; Salmeron Majadas, Sergio; Quirós Expósito, Pilar; Cabestrero Alonso, Raúl
    There exist diverse challenges for inclusive emotions detection in educational scenarios. In order to gain some insight about the difficulties and limitations of them, we have analyzed requirements, accommodations and tasks that need to be adapted for an experiment where people with different functional profiles have taken part. Adaptations took into consideration logistics, tasks involved and user interaction techniques. The main aim was to verify to what extent the same approach, measurements and technological infrastructure already used in previous experiments were adequate for inducing emotions elicited from the execution of the experiment tasks. In the paper, we discuss the experiment arrangements needed to cope with people with different functional profiles, which include adaptations on the analysis and results. Such analysis was validated in a pilot experiment with 3 visually impaired participants.
  • Publicación
    Towards multimodal affective detection in educational systems through mining emotional data sources
    (Springer Nature, 2015) Salmeron Majadas, Sergio; Santos, Olga C.; González Boticario, Jesús
    This paper introduces the work being carried out in an ongoing PhD research focused on the detection of the learners’ affective states by combining different available sources (from physiological sensors to keystroke analysis). Different data mining algorithms and data labeling techniques have been used generating 735 prediction models. Results so far show that predictive models on affective state detection from multimodal-based approaches provide better accuracy rates than single-based.
  • Publicación
    Inclusive personalized e-Learning based on affective adaptive support
    (Springer Nature, 2013) Salmeron Majadas, Sergio; Santos, Olga C.; González Boticario, Jesús
    Emotions and learning are closely related. In the PhD research presented in this paper, that relation has to be taken advantage of. With this aim, within the framework of affective computing, the main goal proposed is modeling learner’s affective state in order to support adaptive features and provide an inclusive personalized e-learning experience. At the first stage of this research, emotion detection is the principal issue to cope with. A multimodal approach has been proposed, so gathering data from diverse sources to feed data mining systems able to supply emotional information is being the current ongoing work. On the next stages, the results of these data mining systems will be used to enhance learner models and based on these, offer a better e-learning experience to improve learner’s results.