Persona: González Boticario, Jesús
Cargando...
Dirección de correo electrónico
ORCID
0000-0003-4949-9220
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
González Boticario
Nombre de pila
Jesús
Nombre
3 resultados
Resultados de la búsqueda
Mostrando 1 - 3 de 3
Publicación BIG-AFF: Exploring low cost and low intrusive infrastructures for affective computing in secondary schools(ACM, 2017-07-09) González Boticario, Jesús; Santos, Olga C.; Cabestrero Alonso, Raúl; Quirós Expósito, Pilar; Salmeron Majadas, Sergio; Uría Rivas, Raúl; Arevalillo Herráez, Miguel; Ferri, Francesc J.Recent research has provided solid evidence that emotions strongly affect motivation and engagement, and hence play an important role in learning. In BIG-AFF project, we build on the hypothesis that ``it is possible to provide learners with a personalised support that enriches their learning process and experience by using low intrusive (and low cost) devices to capture affective multimodal data that include cognitive, behavioural and physiological information''. In order to deal with the affect management complete cycle, thus covering affect detection, modelling and feedback, there is lack of standards and consolidated methodologies. Being our goal to develop realistic affect-aware learning environments, we are exploring different approaches on how these can be supported by either by traditional non-intrusive interaction sources or low intrusive and inexpensive sensing devices. In this work we describe the main issues involved in two user studies carried out with high school learners, highlight some open problems that arose when designing the corresponding experimental settings. In particular, the studies involved varied nature of information sources and each focused on one of the approaches. Our experience reflects the need to develop an extensive knowledge about the organization of this type of experiences that consider user-centric development and evaluation methodologies.Publicación MAMIPEC - Affective modeling in inclusive personalized educational scenarios(IEEE Technical Committee on Learning Technology,, 2012) Santos, Olga C.; González Boticario, Jesús; Arevalillo Herráez, Miguel; Saneiro Silva, María del Mar; Cabestrero Alonso, Raúl; Campo Adrián, María del Campo; Manjarrés Riesco, Ángeles; Moreno Clarí, Paloma; Quirós Expósito, Pilar; Salmeron Majadas, SergioThere is agreement in the literature that affect influences learning. In turn, addressing affective issues in the recommendation process has shown their ability to increase the performance of recommender systems in non-educational scenarios. In our work, we combine both research lines and describe the SAERS approach to model affective educational recommendations. This affective recommendation model has been initially validated with the application of the TORMES methodology to specific educational settings. We report 29 recommendations elicited in 12 scenarios by applying this methodology. Moreover, a UML formalized version of the recommendations model which can describe the recommendations elicited is presented in the paper.Publicación An Intra-Subject Approach Based on the Application of HMM to Predict Concentration in Educational Contexts from Nonintrusive Physiological Signals in Real-World Situations(MDPI, 2021-03-04) Serrano Mamolar, Ana; Arevalillo Herráez, Miguel; Chicote Huete, Guillermo; González Boticario, Jesús; https://orcid.org/0000-0002-0027-7128; https://orcid.org/0000-0002-0350-2079; https://orcid.org/0000-0002-7736-5572Previous research has proven the strong influence of emotions on student engagement and motivation. Therefore, emotion recognition is becoming very relevant in educational scenarios, but there is no standard method for predicting students’ affects. However, physiological signals have been widely used in educational contexts. Some physiological signals have shown a high accuracy in detecting emotions because they reflect spontaneous affect-related information, which is fresh and does not require additional control or interpretation. Most proposed works use measuring equipment for which applicability in real-world scenarios is limited because of its high cost and intrusiveness. To tackle this problem, in this work, we analyse the feasibility of developing low-cost and nonintrusive devices to obtain a high detection accuracy from easy-to-capture signals. By using both inter-subject and intra-subject models, we present an experimental study that aims to explore the potential application of Hidden Markov Models (HMM) to predict the concentration state from 4 commonly used physiological signals, namely heart rate, breath rate, skin conductance and skin temperature. We also study the effect of combining these four signals and analyse their potential use in an educational context in terms of intrusiveness, cost and accuracy. The results show that a high accuracy can be achieved with three of the signals when using HMM-based intra-subject models. However, inter-subject models, which are meant to obtain subject-independent approaches for affect detection, fail at the same task.