Persona:
Garcinuño Martínez, Rosa Mª

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Garcinuño Martínez
Nombre de pila
Rosa Mª
Nombre

Resultados de la búsqueda

Mostrando 1 - 2 de 2
  • Publicación
    Quantification of differential tissue biomarker responses to microplastic ingestion and plasticizer bioaccumulation in aquaculture reared sea bream Sparus aurata
    (Elsevier, 2022-08) Capó Fiol, Xavier; Alomar, Carme; Compa, Monserrat; Solé, Montserrat; Sanahuja, Ignasi; Deudero, Salud; Soliz Rojas, Dulce Lucy; Paniagua González, Gema; Garcinuño Martínez, Rosa Mª; https://orcid.org/0000-0002-3499-5494
    Marine aquaculture is considered a potential source of microplastics (MPs). MPs can induce oxidative stress and damage in marine species. In this study we evaluated the impact of MPs intake in the commercial fish, Sparus aurata , from aquaculture facilities and the antioxidant response associated to this MPs ingestion in caged specimens for 120 days. Sampling was carried out at the beginning of the study T 0 at 60 days (T 60 ) and at 120 days (T 120 ). At each sampling stage, gastrointestinal tract, blood, plasma, liver and muscle samples were obtained to analyse MPs intake (gastrointestinal tract), oxidative stress markers (blood, plasma and liver) and plasticizers bioaccumulation (muscle). Fish sampled at T 60 presented the highest MPs intake and plasticizers accumulated in muscle over time, but with a different pattern according to type: bisphenols and phthalates. This indicates MPs ingestion induces a differential tissue response in S. aurata . Similarly, stress biomarkers presented a differential response throughout the study, depending on the analysed tissue. In the case of oxidative damage markers, for malondialdehyde (MDA) an increase throughout the study was observed both in liver and blood cells but with a progressive decrease in plasma. In the case of phase I detoxifying enzyme activities in liver, 7-ethoxyresorufin O-deethylase (EROD), 7-benzyloxy-4-[trifluoromethyl]coumarin-O-debenzyloxylase (BFCOD) and carboxylesterases (CE), showed a comparable decrease at T 60 with a slight recovery at T 120 . In contrast, glutathione- S -transferase (GST) activity was significantly enhanced at T 60 compared to the other sampling stages. In conclusion, MPs ingestion occurs in aquaculture reared seabream where potentially associated plasticizers accumulate in the muscle and both could be responsible for plasma and liver oxidative stress damage and alterations on detoxifying biomarkers responses
  • Publicación
    Assessment of the impact of aquaculture facilities on transplanted mussels (Mytilus galloprovincialis): Integrating plasticizers and physiological analyses as a biomonitoring strategy
    (Elsevier, 2022-02-15) Rios Fuster, Beatriz; Alomar, Carme; Capó Fiol, Xavier; Silva, Mónica; Solé, Montserrat; Freitas, Rosa; Deudero, Salud; Paniagua González, Gema; Soliz Rojas, Dulce Lucy; Fernández Hernando, Pilar; Garcinuño Martínez, Rosa Mª; https://orcid.org/0000-0002-3499-5494
    The growing plastic production and its continuous use is a significant problem. In addition, aquaculture practices have experienced a considerable growth and plastic is widely used in these activities, hence plasticizers must be considered due to their potential ecotoxicological impacts on species. Mussels placed inside an Integrated Multi-Trophic Aquaculture (IMTA) system and at two control locations were employed to quantify the ingestion of anthropogenic particles and associated chemical plasticizers, such as bisphenol A (BPA) jointly to bisphenol F (BPF) and bisphenol S (BPS), and phthalates represented by diethyl phthalate (DEP), dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP). In addition, some metabolism and oxidative stress related parameters were measured in mussels’ whole soft tissue. Anthropogenic particle ingestion of mussels increased over time at the three locations and the following order of abundance of pollutants was observed: BPA> BPF> DEHP> DBP> BPS> DEP. Even though no differences according to location were found for pollutants’ occurrence, time trends were evidenced for BPA and DEHP. On the other hand, a location effect was observed for biomarkers with highest values detected in mussels located at the vicinities of the aquaculture facility. In addition, a reduced detoxification activity was observed over time parallel to BPA decrease.