Persona:
Arias Calleja, Manuel

Cargando...
Foto de perfil
Dirección de correo electrónico
ORCID
0000-0003-2405-6677
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Arias Calleja
Nombre de pila
Manuel
Nombre

Resultados de la bĆŗsqueda

Mostrando 1 - 1 de 1
  • Publicación
    Carmen : una herramienta de software libre para modelos grƔficos probabilistas
    (Universidad Nacional de Educación a Distancia (España). Escuela Técnica Superior de Ingeniería InformÔtica. Departamento de Inteligencia Artificial, 2009-10-22) Arias Calleja, Manuel
    En las últimas dos décadas se ha dado una proliferación de herramientas para la construcción, manual o automÔtica de Modelos GrÔficos Probabilistas (MGPs). Las herramientas disponibles estÔn limitadas en su mantenibilidad, robustez y eficiencia. Nuestra contribución principal es una nueva herramienta, llamada Carmen, que se ha desarrollado desde cero y estÔ basada en los principios de la ingeniería del software. Carmen tiene un diseño detallado, una documentación y un conjunto de pruebas sistemÔticas para minimizar la presencia de errores. El desarrollo de esta herramienta ha traido como consecuencia varias contribuciones secundarias: primero, un nuevo patrón de diseño llamado permiso-ejecución, que permite realizar operaciones en modelos complejos con múltiples restricciones; segundo, hemos desarrollado un nuevo diseño, que desacopla los diferentes conceptos que constituyen un MGP en partes distintas, permitiendo un mantenimiento posterior mÔs sencillo; tercero, hemos desarrollado una librería genérica de grafos que puede ser utilizada en otras herramientas. Nuestra segunda contribución principal es un método nuevo que mejora significativamente el rendimiento en las operaciones bÔsicas sobre potenciales de variables discretas, tales como suma, multiplicación, marginalización y división. Hemos demostrado también, tanto teórica como empíricamente, que algunas operaciones compuestas pueden ser realizadas de un modo mucho mÔs eficiente si se ejecutan de forma conjunta en lugar de secuencial. Esta mejora en las operaciones de bajo nivel nos lleva a una reducción en el tiempo y en el espacio necesarios en algoritmos de alto nivel, tales como eliminación de variables, propagación en Ôrboles de cliques, etc. Finalmente, la tercera contribución principal es un nuevo método para el anÔlisis de coste-efectividad. Los métodos actuales no pueden tratar con problemas que involucran mÔs de una decisión. Por este motivo, hemos desarrollado un nuevo método de coste-efectividad, que puede ser aplicado tanto en Ôrboles de decisión como en diagramas de influencia. Nuestro método es capaz de manejar varias decisiones y devuelve la estrategia óptima como un conjunto de intervalos para λ, un parÔmetro habitualmente llamado disponibilidad a pagar, que representa la cantidad de dinero equivalente a una unidad de efectividad.