Persona: Sarro Baro, Luis Manuel
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-5622-5191
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Sarro Baro
Nombre de pila
Luis Manuel
Nombre
24 resultados
Resultados de la búsqueda
Mostrando 1 - 10 de 24
Publicación Gaia Data Release 3. The Galaxy in your preferred colours: Synthetic photometry from Gaia low-resolution spectra(EDP Sciences, 2023-06-16) Montegriffo, P.; Bellazzini, M.; Angeli, Francesca De; Andrae, Rene; Barstow, M. A.; Sarro Baro, Luis Manuel; https://orcid.org/0000-0001-5013-5948; https://orcid.org/0000-0001-8200-810X; https://orcid.org/0000-0003-1879-0488; https://orcid.org/0000-0001-8006-6365; https://orcid.org/0000-0002-7116-3259Gaia Data Release 3 provides novel flux-calibrated low-resolution spectrophotometry for ≃220 million sources in the wavelength range 330 nm ≤ λ ≤ 1050 nm (XP spectra). Synthetic photometry directly tied to a flux in physical units can be obtained from these spectra for any passband fully enclosed in this wavelength range. We describe how synthetic photometry can be obtained from XP spectra, illustrating the performance that can be achieved under a range of different conditions – for example passband width and wavelength range – as well as the limits and the problems affecting it. Existing top-quality photometry can be reproduced within a few per cent over a wide range of magnitudes and colour, for wide and medium bands, and with up to millimag accuracy when synthetic photometry is standardised with respect to these external sources. Some examples of potential scientific application are presented, including the detection of multiple populations in globular clusters, the estimation of metallicity extended to the very metal-poor regime, and the classification of white dwarfs. A catalogue providing standardised photometry for ≃2.2 × 108 sources in several wide bands of widely used photometric systems is provided (Gaia Synthetic Photometry Catalogue; GSPC) as well as a catalogue of ≃105 white dwarfs with DA/non-DA classification obtained with a Random Forest algorithm (Gaia Synthetic Photometry Catalogue for White Dwarfs; GSPC-WD).Publicación Gaia Data Release 3. Mapping the asymmetric disc of the Milky Way(EDP Sciences, 2023-06-16) Drimmel, R.; Romero Gómez, Mercé; Chemin, L.; Ramos, Pau; Sarro Baro, Luis ManuelContext. With the most recent Gaia data release, the number of sources with complete 6D phase space information (position and velocity) has increased to well over 33 million stars, while stellar astrophysical parameters are provided for more than 470 million sources, and more than 11 million variable stars are identified. Aims. Using the astrophysical parameters and variability classifications provided in Gaia DR3, we selected various stellar populations to explore and identify non-axisymmetric features in the disc of the Milky Way in configuration and velocity space. Methods. Using more about 580 000 sources identified as hot OB stars, together with 988 known open clusters younger than 100 Myr, we mapped the spiral structure associated with star formation 4−5 kpc from the Sun. We selected over 2800 Classical Cepheids younger than 200 Myr that show spiral features extending as far as 10 kpc from the Sun in the outer disc. We also identified more than 8.7 million sources on the red giant branch (RGB), of which 5.7 million have line-of-sight velocities. This later sample allows the velocity field of the Milky Way to be mapped as far as 8 kpc from the Sun, including the inner disc. Results. The spiral structure revealed by the young populations is consistent with recent results using Gaia EDR3 astrometry and source lists based on near-infrared photometry, showing the Local (Orion) Arm to be at least 8 kpc long, and an outer arm consistent with what is seen in HI surveys, which seems to be a continuation of the Perseus arm into the third quadrant. The subset of RGB stars with velocities clearly reveals the large-scale kinematic signature of the bar in the inner disc, as well as evidence of streaming motions in the outer disc that might be associated with spiral arms or bar resonances. A local comparison of the velocity field of the OB stars reveals similarities and differences with the RGB sample. Conclusions. This cursory study of Gaia DR3 data shows there is a rich bounty of kinematic information to be explored more deeply, which will undoubtedly lead us to a clearer understanding of the dynamical nature of the non-axisymmetric structures of the Milky Way.Publicación The cosmic DANCe of Perseus - I. Membership, phase-space structure, mass, and energy distributions(EDP Sciences, 2023-02-27) Olivares Romero, Javier; Bouy, Hervé; Miret Roig, Nuria; Galli, P. A. B.; Sarro Baro, Luis Manuel; Moraux, Estelle; Berihuete, Ángel; https://orcid.org/0000-0002-7084-487X; https://orcid.org/0000-0001-5292-0421; https://orcid.org/0000-0003-2271-9297; https://orcid.org/0000-0003-4127-7295; https://orcid.org/0000-0002-8589-4423Context. Star-forming regions are excellent benchmarks for testing and validating theories of star formation and stellar evolution. The Perseus star-forming region, being one of the youngest (< 10 Myr), closest (280−320 pc), and most studied in the literature, is a fundamental benchmark. Aims. We aim to study the membership, phase-space structure, mass, and energy (kinetic plus potential) distribution of the Perseus star-forming region using public catalogues (Gaia, APOGEE, 2MASS, and Pan-STARRS). Methods. We used Bayesian methodologies that account for extinction to identify the Perseus physical groups in the phase-space, retrieve their candidate members, derive their properties (age, mass, 3D positions, 3D velocities, and energy), and attempt to reconstruct their origin. Results. We identify 1052 candidate members in seven physical groups (one of them new) with ages between 3 and 10 Myr, dynamical super-virial states, and large fractions of energetically unbounded stars. Their mass distributions are broadly compatible with that of Chabrier for masses ≳0.1 M⊙ and do not show hints of over-abundance of low-mass stars in NGC 1333 with respect to IC 348. These groups’ ages, spatial structure, and kinematics are compatible with at least three generations of stars. Future work is still needed to clarify if the formation of the youngest was triggered by the oldest. Conclusions. The exquisite Gaia data complemented with public archives and mined with comprehensive Bayesian methodologies allow us to identify 31% more members than previous studies, discover a new physical group (Gorgophone: 7 Myr, 191 members, and 145 M⊙), and confirm that the spatial, kinematic, and energy distributions of these groups support the hierarchical star formation scenario.Publicación Near-infrared spectroscopic characterisation of Gaia ultra-cool dwarf candidates. Spectral types and peculiarities(EDP Sciences, 2024-04-30) Ravinet, Thomas; Reylé, Céline; Lagarde, Nadège; Burgasser, Adam J.; Smart, R. L.; Moya, Wisthon Aby Haro; Marocco, Federico; Scholz, Ralf; Cooper, W. J.; Cruz, Kelle; Fernández Trincado, José G.; Homeier, Derek; Sarro Baro, Luis Manuel; https://orcid.org/0000-0001-8652-2835; https://orcid.org/0000-0003-2258-2403; https://orcid.org/0000-0003-0108-3859; https://orcid.org/0000-0002-6523-9536; https://orcid.org/0000-0002-4424-4766; https://orcid.org/0000-0003-3642-6903; https://orcid.org/0000-0001-7519-1700; https://orcid.org/0000-0002-0894-9187; https://orcid.org/0000-0003-3501-8967; https://orcid.org/0000-0002-1821-0650; https://orcid.org/0000-0003-3526-5052; https://orcid.org/0000-0002-8546-9128Context. The local census of very low-mass stars and brown dwarfs is crucial to improving our understanding of the stellar-substellar transition and their formation history. These objects, known as ultra-cool dwarfs (UCDs), are essential targets for searches of potentially habitable planets. However, their detection poses a challenge because of their low luminosity. The Gaia survey has identified numerous new UCD candidates thanks to its large survey and precise astrometry. Aims. We aim to characterise 60 UCD candidates detected by Gaia in the solar neighbourhood with a spectroscopic follow-up to confirm that they are UCDs, as well as to identify peculiarities. Methods. We acquired the near-infrared (NIR) spectra of 60 objects using the SOFI spectrograph between 0.93 and 2.5 µm (R~ 600). We identified their spectral types using a template-matching method. Their binarity is studied using astrometry and spectral features. Results. We confirm that 60 objects in the sample have ultra-cool dwarf spectral types close to those expected from astrometry. Their NIR spectra reveal that seven objects could host an unresolved coolest companion and seven UCDs share the same proper motions as other stars. The characterisation of these UCDs is part of a coordinated effort to improve our understanding of the Solar neighbourhood.Publicación Gaia Data Release 3. Stellar multiplicity, a teaser for the hidden treasure(EDP Sciences, 2023-06-16) Arenou, F.; Babusiaux, C.; Barstow, M. A.; Sarro Baro, Luis ManuelContext. The Gaia DR3 catalogue contains, for the first time, about 800 000 solutions with either orbital elements or trend parameters for astrometric, spectroscopic, and eclipsing binaries, and combinations of these three. Aims. With this paper, we aim to illustrate the huge potential of this large non-single-star catalogue. Methods. Using the orbital solutions and models of the binaries, we have built a catalogue of tens of thousands of stellar masses or lower limits thereof, some with consistent flux ratios. Properties concerning the completeness of the binary catalogues are discussed, statistical features of the orbital elements are explained, and a comparison with other catalogues is performed. Results. Illustrative applications are proposed for binaries across the Hertzsprung-Russell Diagram (HRD). Binarity is studied in the giant branch and a search for genuine spectroscopic binaries among long-period variables is performed. The discovery of new EL CVn systems illustrates the potential of combining variability and binarity catalogues. Potential compact object companions are presented, mainly white dwarf companions or double degenerates, but one candidate neutron star is also found. Towards the bottom of the main sequence, the orbits of previously suspected binary ultracool dwarfs are determined and new candidate binaries are discovered. The long awaited contribution of Gaia to the analysis of the substellar regime shows the brown dwarf desert around solar-type stars using true rather than minimum masses, and provides new important constraints on the occurrence rates of substellar companions to M dwarfs. Several dozen new exoplanets are proposed, including two with validated orbital solutions and one super-Jupiter orbiting a white dwarf, all being candidates requiring confirmation. Besides binarity, higher order multiple systems are also found. Conclusions. By increasing the number of known binary orbits by more than one order of magnitude, Gaia DR3 will provide a rich reservoir of dynamical masses and an important contribution to the analysis of stellar multiplicity.Publicación Ultracool dwarfs in Gaia DR3(EDP Sciences, 2023-01-26) Sarro Baro, Luis Manuel; Berihuete, Ángel; Smart, R. L.; Reylé, Céline; Barrado, David; Garcia Torres, Miguel; Cooper, W. J.; Jones, H. R. A.; Marocco, Federico; Creevey, Orlagh; Sordo, Rosanna; Bailer Jones, C. A. L.; Montegriffo, P.; Ruth Carballo; Andrae, Rene; Fouesneau, Morgan; Lanzafame, Alessandro; Pailler, Fred; Thévenin, F.; Lobel, A.; Delchambre, L.; Korn, Andreas J.; Recio Blanco, Alejandra; Schultheis, M.; Angeli, Francesca De; Brouillet, Nathalie; Casamiquela, Laia; Contursi, Gabriele; Laverny, P. de; Garcia Lario, Pedro; Kordopatis, G.; Lebreton, Y.; Livanou, E.; Lorca, Alejandro; Palicio, Pedro Alonso; Slezak Oreshina, I.; Contursi, Gabriele; Ulla, A.; Zhao, He; https://orcid.org/0000-0002-8589-4423; https://orcid.org/0000-0002-4424-4766; https://orcid.org/0000-0003-2258-2403; https://orcid.org/0000-0002-5971-9242; https://orcid.org/0000-0002-6867-7080; https://orcid.org/0000-0003-3501-8967; https://orcid.org/0000-0003-0433-3665; https://orcid.org/0000-0001-7519-1700; https://orcid.org/0000-0003-1853-6631; https://orcid.org/0000-0003-4979-0659; https://orcid.org/0000-0001-5013-5948; https://orcid.org/0000-0001-7412-2498; https://orcid.org/0000-0001-8006-6365; https://orcid.org/0000-0001-9256-5516; https://orcid.org/0000-0002-2697-3607; https://orcid.org/0000-0002-6855-2050; https://orcid.org/0000-0001-5030-019X; https://orcid.org/0000-0003-2559-408X; https://orcid.org/0000-0002-3881-6756; https://orcid.org/0000-0002-6590-1657; https://orcid.org/0000-0003-1879-0488; https://orcid.org/0000-0002-3274-7024; https://orcid.org/0000-0001-5238-8674; https://orcid.org/0000-0001-5370-1511; https://orcid.org/0000-0002-2817-4104; https://orcid.org/0000-0003-4039-8212; https://orcid.org/0000-0002-9035-3920; https://orcid.org/0000-0002-7985-250X; https://orcid.org/0000-0002-7432-8709; https://orcid.org/0000-0001-5370-1511; https://orcid.org/0000-0003-2645-6869Context. Previous Gaia data releases offered the opportunity to uncover ultracool dwarfs (UCDs) through astrometric, rather than purely photometric, selection. The most recent, the third data release (DR3), offers in addition the opportunity to use low-resolution spectra to refine and widen the selection. Aims. In this work we use the Gaia DR3 set of UCD candidates and complement the Gaia spectrophotometry with additional photometry in order to characterise the global properties of the set. This includes the inference of the distances, their locus in the Gaia colour-absolute magnitude diagram, and the (biased through selection) luminosity function at the faint end of the main sequence. We study the overall changes in the Gaia RP spectra as a function of spectral type. We study the UCDs in binary systems, we attempt to identify low-mass members of nearby young associations, star-forming regions, and clusters, and we analyse their variability properties. Methods. We used a forward model and the Bayesian inference framework to produce posterior probabilities for the distribution parameters and a calibration of the colour index as a function of the absolute magnitude in the form of a Gaussian process. Additionally, we applied the hierarchical mode association clustering (HMAC) unsupervised classification algorithm for the detection and characterisation of overdensities in the space of celestial coordinates, projected velocities, and parallaxes. Results. We detect 57 young, kinematically homogeneous groups, some of which are identified as well-known star-forming regions, associations, and clusters of different ages. We find that the primary members of the 880 binary systems with a UCD belong to the thin and thick disc components of the Milky Way. We identify 1109 variable UCDs using the variability tables in the Gaia archive, 728 of which belong to the star-forming regions defined by HMAC. We define two groups of variable UCDs with extreme bright or faint outliers. Conclusions. The set of sources identified as UCDs in the Gaia archive contains a wealth of information that will require focused follow-up studies and observations. It will help advance our understanding of the nature of the faint end of the main sequence and the stellar-substellar transition.Publicación Gaia Focused Product Release:Asteroid orbital solution. Properties and assessment(EDP Sciences, 2023-12-08) David, Patrice; Mignard, F.; Hestroffer, D.; Tanga, P.; Sarro Baro, Luis ManuelContext. We report the exploitation of a sample of Solar System observations based on data from the third Gaia Data Release (Gaia DR3) of nearly 157 000 asteroids. It extends the epoch astrometric solution over the time coverage planned for the Gaia DR4, which is not expected before the end of 2025. This data set covers more than one full orbital period for the vast majority of these asteroids. The orbital solutions are derived from the Gaia data alone over a relatively short arc compared to the observation history of many of these asteroids. Aims. The work aims to produce orbital elements for a large set of asteroids based on 66 months of ccurate astrometry provided by Gaia and to assess the accuracy of these orbital solutions with a omparison to the best available orbits derived from independent observations. A second validation is performed with accurate occultation timings. Methods. We processed the raw astrometric measurements of Gaia to obtain astrometric positions of moving objects with 1D sub-mas accuracy at the bright end. For each asteroid that we matched to the data, an orbit fitting was attempted in the form of the best fit of the initial conditions at the median epoch. The force model included Newtonian and relativistic accelerations to derive the observation equations, which were solved with a linear least-squares fit. Results. Orbits are provided in the form of state vectors in the International Celestial Reference Frame for 156 764 asteroids, including near-Earth objects, main-belt asteroids, and Trojans. For the asteroids with the best observations, the (formal) relative uncertainty σa/a is better than 10−10. Results are compared to orbits available from the Jet Propulsion Laboratory and MPC. Their orbits are based on much longer data arcs, but from positions of lower quality. The relative differences in semi-major axes have a mean of 5 × 10−10 and a scatter of 5 × 10−9.Publicación Ultracool spectroscopic outliers in Gaia DR3(Oxford University Press, 2023-10-05) Cooper, W. J.; Smart, R. L.; Jones, H. R. A.; Sarro Baro, Luis ManuelGaia DR3 provided a first release of RP spectra and astrophysical parameters for ultracool dwarfs (UCDs). We used these Gaia RP spectra and astrophysical parameters to select the most outlying UCDs. These objects have spectral types of M7 or later and might be young brown dwarfs or low-metallicity objects. This work aimed to find UCDs that have Gaia RP spectra significantly different to the typical population. However, the intrinsic faintness of these UCDs in Gaia means that their spectra were typically rather low signal-to-noise ratio in Gaia DR3. This study is intended as a proof of concept for future iterations of the Gaia data releases. Based on well-studied subdwarfs and young objects, we created a spectral type-specific color ratio, defined using Gaia RP spectra; this ratio is then used to determine which objects are outliers. We then used the objects kinematics and photometry external to Gaia to cut down the list of outliers into a list of ‘prime candidates’. We produce a list of 58 Gaia RP spectra outliers, seven of which we deem as prime candidates. Of these, six are likely subdwarfs and one is a known young stellar object. Four of six subdwarf candidates were known as subdwarfs already. The two other subdwarf candidates, namely 2MASS J03405673 + 2633447 (sdM8.5) and 2MASS J01204397 + 6623543 (sdM9), are new classifications.Publicación Gaia Data Release 3. Summary of the content and survey properties(EDP Sciences, 2023-06-16) Vallenari, Antonella; Brown, Anthony; Prusti, Timo; Bruijne, Jos de; Sarro Baro, Luis Manuel; https://orcid.org/0000-0003-0014-519X; https://orcid.org/0000-0002-7419-9679; https://orcid.org/0000-0003-3120-7867; https://orcid.org/0000-0001-6459-8599Context. We present the third data release of the European Space Agency’s Gaia mission, Gaia DR3. This release includes a large variety of new data products, notably a much expanded radial velocity survey and a very extensive astrophysical characterisation of Gaia sources. Aims. We outline the content and the properties of Gaia DR3, providing an overview of the main improvements in the data processing in comparison with previous data releases (where applicable) and a brief discussion of the limitations of the data in this release. Methods. The Gaia DR3 catalogue is the outcome of the processing of raw data collected with the Gaia instruments during the first 34 months of the mission by the Gaia Data Processing and Analysis Consortium. Results. The Gaia DR3 catalogue contains the same source list, celestial positions, proper motions, parallaxes, and broad band photometry in the G, GBP, and GRP pass-bands already present in the Early Third Data Release, Gaia EDR3. Gaia DR3 introduces an impressive wealth of new data products. More than 33 million objects in the ranges GRVS < 14 and 3100 < Teff < 14 500, have new determinations of their mean radial velocities based on data collected by Gaia. We provide GRVS magnitudes for most sources with radial velocities, and a line broadening parameter is listed for a subset of these. Mean Gaia spectra are made available to the community. The Gaia DR3 catalogue includes about 1 million mean spectra from the radial velocity spectrometer, and about 220 million low-resolution blue and red prism photometer BP/RP mean spectra. The results of the analysis of epoch photometry are provided for some 10 million sources across 24 variability types. Gaia DR3 includes astrophysical parameters and source class probabilities for about 470 million and 1500 million sources, respectively, including stars, galaxies, and quasars. Orbital elements and trend parameters are provided for some 800 000 astrometric, spectroscopic and eclipsing binaries. More than 150 000 Solar System objects, including new discoveries, with preliminary orbital solutions and individual epoch observations are part of this release. Reflectance spectra derived from the epoch BP/RP spectral data are published for about 60 000 asteroids. Finally, an additional data set is provided, namely the Gaia Andromeda Photometric Survey, consisting of the photometric time series for all sources located in a 5.5 degree radius field centred on the Andromeda galaxy. Conclusions. This data release represents a major advance with respect to Gaia DR2 and Gaia EDR3 because of the unprecedented quantity, quality, and variety of source astrophysical data. To date this is the largest collection of all-sky spectrophotometry, radial velocities, variables, and astrophysical parameters derived from both low- and high-resolution spectra and includes a spectrophotometric and dynamical survey of SSOs of the highest accuracy. The non-single star content surpasses the existing data by orders of magnitude. The quasar host and galaxy light profile collection is the first such survey that is all sky and space based. The astrophysical information provided in Gaia DR3 will unleash the full potential of Gaia’s exquisite astrometric, photometric, and radial velocity surveys.Publicación Gaia Focused Product Release: Spatial distribution of two diffuse interstellar bands(EDP Sciences, 2023-09-05) Schultheis, M.; Zhao, He; Zwitter, Tomaž; Bailer Jones, C. A. L.; Sarro Baro, Luis ManuelDiffuse interstellar bands (DIBs) are absorption features seen in optical and infrared spectra of stars and extragalactic objects that are probably caused by large and complex molecules in the galactic interstellar medium (ISM). Here we investigate the Galactic distribution and properties of two DIBs identified in almost six million stellar spectra collected by the Gaia Radial Velocity Spectrometer. These measurements constitute a part of the Gaia Focused Product Release to be made public between the Gaia DR3 and DR4 data releases. In order to isolate the DIB signal from the stellar features in each individual spectrum, we identified a set of 160 000 spectra at high Galactic latitudes (|b| ⩾ 65◦) covering a range of stellar parameters which we consider to be the DIB-free reference sample. Matching each target spectrum to its closest reference spectra in stellar parameter space allowed us to remove the stellar spectrum empirically, without reference to stellar models, leaving a set of six million ISM spectra. Using the star’s parallax and sky coordinates, we then allocated each ISM spectrum to a voxel (VOlume piXEL) on a contiguous three-dimensional grid with an angular size of 1.8◦ (level 5 HEALPix) and 29 unequally sized distance bins. Identifying the two DIBs at 862.1 nm (λ862.1) and 864.8 nm (λ864.8) in the stacked spectra, we modelled their shapes and report the depth, central wavelength, width, and equivalent width (EW) for each, along with confidence bounds on these measurements. We then explored the properties and distributions of these quantities and compared them with similar measurements from other surveys. Our main results are as follows: (1) the strength and spatial distribution of the DIB λ862.1 are very consistent with what was found in Gaia DR3, but for this work we attained a higher signal-to-noise ratio in the stacked spectra to larger distances, which allowed us to trace DIBs in the outer spiral arm and beyond the Scutum–Centaurus spiral arm; (2) we produced an all-sky map below ±65◦ of Galactic latitude to ∼4000 pc of both DIB features and their correlations; (3) we detected the signals of DIB λ862.1 inside the Local Bubble (≲200 pc); and (4) there is a reasonable correlation with the dust reddening found from stellar absorption and EWs of both DIBs with a correlation coefficient of 0.90 for λ862.1 and 0.77 for λ864.8.
- «
- 1 (current)
- 2
- 3
- »