Persona: Varela Díez, Fernando
Cargando...
Dirección de correo electrónico
ORCID
0000-0002-3564-1639
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Varela Díez
Nombre de pila
Fernando
Nombre
2 resultados
Resultados de la búsqueda
Mostrando 1 - 2 de 2
Publicación A New Thermodynamic Model to Approximate Properties of Subcritical Liquids(MDPI, 2023-06-29) Sánchez Orgaz, Susana; González Fernández, M. Celina; Varela Díez, Fernando; Rodríguez Laguna, JavierIn order to obtain the thermodynamic properties of compressed liquids, it is usual to consider them as incompressible systems, since liquids and solids are well represented by this thermodynamic model. Within this model, there are two usual hypotheses that can be derived in two different submodels: the strictly incompressible (SI) model, which supposes a constant specific volume 𝑣=𝑣0, and a more general model, called temperature-dependent incompressible (TDI) model, which relates a specific volume to temperature, 𝑣=𝑣(𝑇). But, usually, this difference ends here in the thermal equation of state, and only the SI model was developed for caloric and entropic equations. The aim of this work is to provide a complete formulation for the TDI model and show where it can be advantageously used rather than the SI model. The study concludes that the proposed model outperforms the traditional model in the study of subcritical liquid. One conceivable utilization of this model is its integration into certain thermodynamic calculation software packages (e.g., EES), which integrate the more elementary SI model into its code for certain incompressible substances.Publicación Comparison of Different Technologies for Integrated Solar Combined Cycles: Analysis of Concentrating Technology and Solar Integration(MDPI, 2018-04-25) Sánchez, Consuelo; Abbas, Rubén; Muñoz Antón, Javier; Ortega, Guillermo; Rovira de Antonio, Antonio José; Valdés Fernández, Manuel Tomás; Barbero Fresno, Rubén; Montes Pita, María José; Muñoz Domínguez, Marta; Varela Díez, FernandoThis paper compares the annual performance of Integrated Solar Combined Cycles (ISCCs) using different solar concentration technologies: parabolic trough collectors (PTC), linear Fresnel reflectors (LFR) and central tower receiver (CT). Each solar technology (i.e. PTC, LFR and CT) is proposed to integrate solar energy into the combined cycle in two different ways. The first one is based on the use of solar energy to evaporate water of the steam cycle by means of direct steam generation (DSG), increasing the steam production of the high pressure level of the steam generator. The other one is based on the use of solar energy to preheat the pressurized air at the exit of the gas turbine compressor before it is introduced in the combustion chamber, reducing the fuel consumption. Results show that ISCC with DSG increases the yearly production while solar air heating reduces it due to the incremental pressure drop. However, air heating allows significantly higher solar-to-electricity efficiencies and lower heat rates. Regarding the solar technologies, PTC provides the best thermal results.