Persona: Marín Martín, Marta María
Cargando...
Dirección de correo electrónico
ORCID
0000-0003-2686-909X
Fecha de nacimiento
Proyectos de investigación
Unidades organizativas
Puesto de trabajo
Apellidos
Marín Martín
Nombre de pila
Marta María
Nombre
3 resultados
Resultados de la búsqueda
Mostrando 1 - 3 de 3
Publicación Parametric Analysis of the Mandrel Geometrical Data in a Cold Expansion Process of Small Holes Drilled in Thick Plates(MDPI, 2019-12-08) Calaf Chica, José; Teti, Roberto; Segreto, Tiziana; Marín Martín, Marta María; Rubio Alvir, Eva MaríaCold expansion technology is a cold-forming process widely used in aeronautics to extend the fatigue life of riveted and bolted holes. During this process, an oversized mandrel is pushed through the hole in order to yield it and generate compressive residual stresses contributing to the fatigue life extension of the hole. In this paper, a parametric analysis of the mandrel geometrical data (inlet angle straight zone length and diametric interference) and their influence on the residual stresses was carried out using a finite element method (FEM). The obtained results were compared with the conclusions presented in a previous parametric FEM analysis on the influence of the swage geometry in a swaging cold-forming process of gun barrels. This process could be considered, in a simplified way, as a scale-up of the cold expansion process of small holes, and this investigation demonstrated the influence of the diameter ratio (K) on the relation between the mandrel or swage geometry and the residual stresses obtained after the cold-forming process.Publicación Analysis of Force Signals for the Estimation of Surface Roughness during Robot-Assisted Polishing(MDPI, 2018-08-15) Teti, Roberto; Agustina Tejerizo, Beatriz De; Marín Martín, Marta María; Rubio Alvir, Eva MaríaIn this study feature extraction of force signals detected during robot-assisted polishing processes was carried out to estimate the surface roughness during the process. The purpose was to collect significant features from the signal that allow the determination of the end point of the polishing process based on surface roughness. For this objective, dry polishing turning tests were performed on a Robot-Assisted Polishing (RAP) machine (STRECON NanoRAP 200) during three polishing sessions, using the same polishing conditions. Along the tests, force signals were acquired and offline surface roughness measurements were taken at the end of each polishing session. As a main conclusion, it can be affirmed, regarding the force signal, that features extracted from both time and frequency domains are valuable data for the estimation of surface roughness.Publicación A Multi-Response Optimization of Thrust Forces, Torques, and the Power of Tapping Operations by Cooling Air in Reinforced and Unreinforced Polyamide PA66(MDPI, 2018-03-20) Domingo Navas, María Rosario; Agustina Tejerizo, Beatriz De; Marín Martín, Marta MaríaThe use of cooling air during machining is an environmentally conscious procedure, and its applicability to different processes is a research priority. We studied tapping operations, an important operation in the assembly process, using cooling air with unreinforced polyamide (PA66) and polyamide reinforced with glass fiber (PA66-GF30). These materials are widely used in industry, but their behavior with respect to tapping has not been studied. We analyze the outcomes regarding the thrust force, torque, and power at cutting speeds between 15 and 60 m/min. The experimental tests were executed using cooling air at 22 °C, 2 °C, and −18 °C in dry conditions. The M12 × 1.75 mm taps were high-speed steel, with cobalt as the base material and coatings of TiN and AlCrN. To identify the more influential factors, an analysis of variance was performed, along with multi-response optimization to identify the desirability values. This optimization shows that the optimum for PA66can be found in environments close to 3 °C, while the optimum for PA66-GF30 is found at the minimal temperature studied (−18 °C). Thus, cooling air can be considered an adequate procedure for tapping operations, to increase the sustainability of the manufacturing processes.