Logotipo del repositorio
  • English
  • Español
  • Français
  • Iniciar sesión
    Identificación habilitada exclusivamente para personal de Biblioteca.
    ¿Has olvidado tu contraseña?
Logotipo del repositorio
  • Comunidades
  • Filtrar búsqueda
  • Depositar
  • English
  • Español
  • Français
  • Iniciar sesión
    Identificación habilitada exclusivamente para personal de Biblioteca.
    ¿Has olvidado tu contraseña?
  1. Inicio
  2. Buscar por autor

Examinando por Autor "Matthew Spinks"

Mostrando 1 - 1 de 1
Resultados por página
Opciones de ordenación
  • Cargando...
    Miniatura
    Publicación
    Compatibly involutive residuated lattices and the Nelson identity
    (Springer Nature, 2018-11-03) Matthew Spinks; Rivieccio, Umberto; Nascimento, Thiago
    Nelson’s constructive logic with strong negation N3 can be presented (to within definitional equivalence) as the axiomatic extension NInFL ew of the involutive full Lambek calculus with exchange and weakening by the Nelson axiom[Figure not available: see fulltext.] The algebraic counterpart of NInFL ew is the recently introduced class of Nelson residuated lattices. These are commutative integral bounded residuated lattices ⟨ A; ∧ , ∨ , ∗ , ⇒ , 0 , 1 ⟩ that: (i) are compatibly involutive in the sense that ∼ ∼ a= a for all a∈ A, where ∼ a: = a⇒ 0 , and (ii) satisfy the Nelson identity, namely the algebraic analogue of (Nelson ⊢ ), viz.(x⇒(x⇒y))∧(∼y⇒(∼y⇒∼x))≈x⇒y.The present paper focuses on the role played by the Nelson identity in the context of compatibly involutive commutative integral bounded residuated lattices. We present several characterisations of the identity (Nelson) in this setting, which variously permit us to comprehend its model-theoretic content from order-theoretic, syntactic, and congruence-theoretic perspectives. Notably, we show that a compatibly involutive commutative integral bounded residuated lattice A is a Nelson residuated lattice iff for all a, b∈ A, the congruence condition ΘA(0,a)=ΘA(0,b)andΘA(1,a)=ΘA(1,b)impliesa=bholds. This observation, together with others of the main results, opens the door to studying the characteristic property of Nelson residuated lattices (and hence Nelson’s constructive logic with strong negation) from a purely abstract perspective.
Enlaces de interés

Aviso legal

Política de privacidad

Política de cookies

Reclamaciones, sugerencias y felicitaciones

Recursos adicionales

Biblioteca UNED

Depósito de datos de investigación

Portal de investigación UNED

InvestigaUNED

Contacto

Teléfono: 913988766 / 6633 / 7891 / 6172

Correo: repositoriobiblioteca@adm.uned.es